References

- Water + Soap + Sound (youtube.com, from NightHawkInLight, Sep 23, 2014),https://youtu.be/OU3953k7tIQ

  1. Drops on Drops on Drops (youtube.com, from Physics Central, Oct 15, 2012), https://youtu.be/KZ5ZLPWasrM
  2. J. Moláček and J. W. M. Bush. Drops bouncing on a vibrating bath. J. Fluid. Mech. 727, 582-611 (2013),http://math.mit.edu/~bush/wordpress/wp-content/uploads/2013/07/MB1-2013.pdf
  3. Yves Couder . Explains Wave/Particle Duality via Silicon Droplets [Through the Wormhole](youtube.com, from draconisthe0ry, Aug 2, 2011), https://youtu.be/W9yWv5dqSKk
  4. How To Make Droplets Levitate on Water (technologyreview.com, 2012),http://www.technologyreview.com/view/429634/how-to-make-droplets-levitate-on-water/
  5. D. Terwagne and J. W. M. Bush. Tibetan singing bowls. Nonlinearity 24, R51-R56 (2011),http://math.mit.edu/~bush/wordpress/wp-content/uploads/2012/08/TibetanBowls.pdf
  6. D. Terwagne. Bouncing Droplets, the Role of Deformations. (Thesis, Université de Liège, 2011),http://home.agh.edu.pl/~kozlow/fizyka/w%EAdruj%B9ce%20krople/2011_Terwagne_these.pdf
  7. Y. Couder, E. Fort, C.-H. Gautier, and A. Boudaoud. From Bouncing to Floating: Noncoalescence of Drops on a Fluid Bath. Phys. Rev. Lett. 94, 177801 (2005),http://www.researchgate.net/profile/Emmanuel_Fort/publication/7837945_From_bouncing_to_floating_Noncoalescence_of_drops_on_a_fluid_bath/links/0046351e54fd772dcf000000.pdf
  8. J. Walker. Drops of liquid can be made to float on the liquid. What enables them to do so? Sci. Am.238, 6, 123–129 (1978)
  9. Y. Amarouchene, G. Cristobal, and H. Kellay. Noncoalescing Drops. Phys. Rev. Lett. 87, 206104 (2011),http://www.researchgate.net/profile/Yacine_Amarouchene/publication/11662668_Noncoalescing_drops/links/0fcfd50bf1ddf52395000000.pdf
  10. D. Terwagne, F. Ludewig, N. Vandewalle, and S. Dorbolo. The role of the droplet deformations in the bouncing droplet dynamics. Phys. Fluids 25,122101(2013),http://www.researchgate.net/profile/Denis_Terwagne/publication/235357505_The_role_of_deformations_in_the_bouncing_droplet_dynamics/links/02bfe511d0c6a0b6a6000000.pdf
  11. L. Chen, J. Wu, Z. Li, and S. Yao. Evolution of entrapped air under bouncing droplets on viscoelastic surfaces. Colloids and Surfaces A: Physicochem. Eng. Aspects 384, 1–3, 726–732 (2011)
  12. T. Gilet, J. W. M. Bush. The fluid trampoline: droplets bouncing on a soap film. J. Fluid Mech. 625, 167-203 (2009), http://www-math.mit.edu/~bush/Trampoline_JFM.pdf
  13. A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder. Information stored in Faraday waves:the origin of a path memory. J. Fluid Mech. 674, 433-463(2011),https://blog.espci.fr/aeddi/files/2014/06/Walker_JFM.pdf
  14. G. P. Neitzel and P.D. Aversana. Noncoalescence and Nonwetting Behaviour of Liquids. Ann. Rev. Fluid Mech. 34, 267-289 (2002),http://m.njit.edu/~kondic/pasi/files/Neitzel/suppl/nonwetting/NeitzelDellAversana-ARFM_34.pdf
  15. Y. Couder, S. Protiere, E. Fort, and A. Boudaoud. Dynamical phenomena: Walking and orbiting droplets.Nature 437, 208 (2005)
  16. J. Moláček and J. W. M. Bush. Drops walking on a vibrating bath: towards a hydronamic pilot-wave theory. J. Fluid Mech. 727, 612-647 (2013),http://math.mit.edu/~bush/wordpress/wpcontent/uploads/2013/07/MB2-2013.pdf
  17. D. M. Harris and J. W. M. Bush. The pilot-wave dynamics of walking droplets. Phys. Fluids 25, 091112(2013)
  18. J. Qian and C. K. Law. Regimes of coalescence and separation in droplet collision. J. Fluid. Mech. 331,59-80 (1997)
  19. D. Terwagne, T. Gilet, N. Vandewalle, and S. Dorbolo. From a Bouncing Compound Drop to a Double Emulsion. Langmuir 26, 14, 11680-11685 (2010),http://orbi.ulg.ac.be//bitstream/2268/105074/2/2010-Langmuir-Terwagne.pdf
  20. N. Wadhwa, P. Vlachos, and S.Jung. Noncoalescence in the Oblique Collision of Fluid Jets. Phys.Rev.Lett.110,124502(2013),https://vtechworks.lib.vt.edu/bitstream/handle/10919/24515/PhysRevLett.110.124502.pdf?sequence=1
  21. Ø. Wind-Willassen, J. Moláček, D. M. Harris, and J. W. M. Bush. Exotic states of bouncing and walking droplets. Phys. Fluids25,082002(2013),http://orbit.dtu.dk/fedora/objects/orbit:124040/datastreams/file_93e0e335-76ef-432c-a43b-821ec14c4e9d/content
  22. F. Blanchette and T. P. Bigioni. Partial coalescence of drops at liquid interfaces. Nature Physics 2, 254-257 (2006)
  23. J. W. M. Bush. Pilot-Wave Hydrodynamics. Ann. Rev. Fluid Mech 47, 269–292 (2015),http://math.mit.edu/~bush/wordpress/wp-content/uploads/2015/01/Bush-AnnRev2015.pdf
  24. H. Chu and H. Fei. Vortex-mediated bouncing drops on an oscillating liquid. Phys. Rev. E 89, 063011(2014)
  25. R. Ramachandran and M. Nosonovsky. Vibro-levitation and inverted pendulum: parametric resonance in vibrating droplets and soft materials. Soft Matter 10, 4633 (2014),http://pubs.rsc.org/en/content/articlepdf/2014/SM/C4SM00265B
  26. Dotwave.org, http://dotwave.org/category/bibliography/core-bibliography/Y. Couder and E. Fort. Single-Particle Diffraction and Interference at a Macroscopic Scale. Phys. Rev.Lett. 97, 154101 (2006), https://hekla.ipgp.fr/IMG/pdf/Couder-Fort_PRL_2006.pdf
  27. R. Brady and R. Anderson. Why bouncing droplets are a pretty good model of quantum mechanics (2014), arXiv:1401.4356 [quant-ph]
  28. S. Perrard. Une mémoire Ondulatoire: états propres, chaos et probabilités (Dissertation, Univ. Paris 7,2014), https://tel.archives-ouvertes.fr/tel-01158368/document
  29. J. W. M. Bush, A. U. Oza, and J. Moláček. The wave-induced added mass of walking droplets. J. Fluid Mech. 755, R7 (2014), http://math.mit.edu/~bush/wordpress/wp-ontent/uploads/2014/08/BoostJFM.pdf
  30. D. M. Harris, T. Liu, and J. W. M. Bush. A low-cost, precise piezoelectric droplet-on-demand generator. Exp. in Fluids, 56, 4, 1-7(2015),http://math.mit.edu/~bush/wordpress/wpcontent/uploads/2015/04/Harris-DropGenerator.pdf
  31. S. Perrard, M. Labousse, E. Fort, Y. Couder. Chaos driven by interfering memory. Phys. Rev. Lett. 113,10, 104101 (2014), https://hal.archives-ouvertes.fr/hal-01061415/document
  32. M. Labousse. Étude d’une dynamique à mémoire de chemin: une expérimentation théorique (Dissertation, Univ. Pierre et Marie Curie UPMC, Paris VI, 2014), https://pastel.archives-ouvertes.fr/tel-01114815/document
  33. R. Carmigniani, S. Lapointe, S. Symon, B. J. McKeon. Influence of a local change of depth on the behavior of walking oil drops. Exp. Thermal and Fluid Sci. 54, 237-246 (2014), arXiv:1310.2662v1[physics.flu-dyn]
  34. A. Andersen, J. Madsen, C. Reichelt, S. Rosenlund Ahl, B. Lautrup, C. Ellegaard, M. T. Levinsen, and T.Bohr. Comment on Y. Couder and E. Fort: Single-Particle Diffraction and Interference at a Macroscopic Scale [Phys. Rev. Lett. 97, 154101 (2006)] (2014), arXiv:1405.0466v1 [physics.flu-dyn]
  • course/interesting_problems/2016/topic5/reference.txt
  • 最后更改: 2016/03/30 14:24
  • (外部编辑)