Structural Properties and Electronic Structures of Amorphous HfO₂/Si(001) interface

G. H. Chen , Z. F. Hou and X. G. Gong

Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai-200433, China

Abstract

Using the projector augmented wave method within the generalized gradient approximation, we have performed ab-initio molecular dynamics simulations to generate an atomic structure model of amorphous hafnium dioxide (a-HfO₂) by a melt-and-quench scheme, and have investigated the structural and electronic properties of a-HfO₂/Si(001)- $c(2\times2)$ interface. The structure of a-HfO₂ sample is analyzed via the atomic coordination number and partial pair-radius distribution functions. Our results show the average Hf-O nearest-neighbor distance is 2.06 Å, which is comparable with the Hf-O bond lengths (in the range from 2.04\AA ~ to 2.25\AA) in monoclinic HfO₂ crystalline, and also indicate the generated sample essentially reflects the experimentally measured structural characteristics of a-HfO₂. Most importantly, it is found that the valence band offset of a-HfO₂/Si interface is about 2.97eV, and our results suggest that the coordination of Si atoms at interface would significantly affect the electronic properties of interface.

ow resistance lay

Metal gate

High-k gate oxide

Simulation Methods

VASP: Projected Augmented Wave method

Exc: GGA-PW91; Ecut: 500eV; k-mesh: 3*3*1

Relaxation criteria: force < 0.025 eV/atom

MD: Canonical Ensemble - Nose thermostat

Background

thermal stable with Si; large band gap

Results

HK+MG

a-HfO2: Melt-and-quench

T is increased from 300 to 4000 K in steps of 1.5 ps, then decreased in a reversed sequence.

96 atoms in a cubic cell

for a total simulation time of 22.5 ps

The structure was relaxed after quench

First peak: ~2.06 A Hf-O

Comparable to that in crystal and the exp. Coordination number < that in crystal HfO₂

Resonable amorphous HfO₂ was obtained.

Structure Analysis

Si(#)	$N_{ m Si-Hf}$	N_{Si}	$d_{ ext{Si-Hf}}/ ext{Å}$	$d_{ ext{Si-O}}/ ext{Å}$
		0		
Si(1)	0	2	-	1.67, 1.67
Si(2)	1	1	2.72	1.70
Si(3)	2	1	2.78, 3.40	1.80
Si(4)	1	2	3.07	1.71, 1.74
Si(5)	1	0	2.87	-
Si(6)	2	0	2.91, 3.38	-
Si(7)	2	0	2.83, 2.97	-
Si(8)	1	1	3.16	1.76

Coordination number of the Si atom at the interface is smaller than that in the bulk.

a: 0.5468nm (cal.) 0.5340nm(exp.)

Si: (001)2*2

6 layers (48 atoms)

a*b*c=10.936*10.936*c

no surface reconstruction

H saturated (16 H atoms)

(H relaxed with 5 layers fixed)

Density of States

- a) A peak appears at about -0.2eV below the fermi level.
- b) The peak is dominated by the interface Si atoms.
- =>The electronic properties of the interface are greatly affected by the bond states of the interface Si atoms.

Band Offset

0.77eV (cal.) 1.12eV (exp.)

Ega-Hfo2: 3.39eV (cal.)

5.7eV (exp.a)

CBO = $E_{\alpha}^{\text{a-Hfo2}} - E_{\alpha}^{\text{Si}} - \text{VBO}$

 $VBO = VBM_{HfO2(0)}\text{-}VBM_{Si(0)}\text{+} \{\Delta core_{mix}\text{-}\Delta core_{sept}\}$

2.97eV and 1.61eV inhibit the Schotty emission of electrons or holes.

- (1) Reasonable amorphous HfO2 sample has been obtained via the ab-initio molecular dynamics.
- (2) The electronic properties of the Interface are greatly affected by the coordination of the interface Si atoms.
- (3) The VBO(2.97eV) and CBO (1.61eV) inhibit the Schottky emission of electrons or holes.

- J. Robertson, Rep. Prog. Phys. 69, 327(2006)
- X. Zhao et al. Phys. Rev. Lett. 71.085107 (2005)
- T.V. Peveralov, J. Appl. Phys. 101,053704 (2007)
- http://www.intel.com/technology/45nm/index.htm