Surface Ferromagnetism in HfO₂ Induced by Excess Oxygen Atoms

G. H. Chen^{1,2}, Q. Zhang^{2,3}, X. G. Gong¹, and S. Yunoki^{2,3}

¹Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433, China ²Computational Condensed Matter Physics Laboratory, RIKEN ASI, Saitama 351-0198, Japan

³CREST, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan

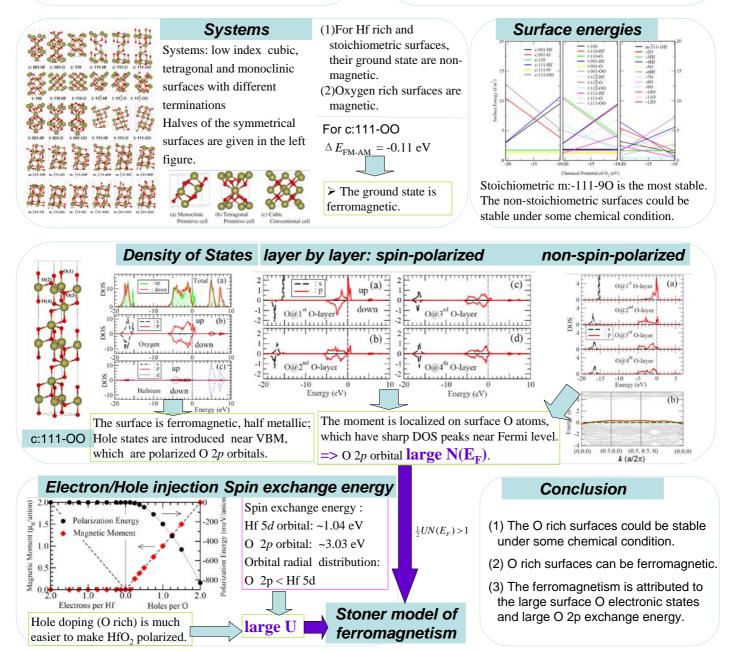
Abstract

First principles simulations based on density functional theory are performed to study surface magnetic properties of low index cubic, tetragonal, and monoclinic HfO_2 surfaces with different terminations. Our systematic calculations reveal that i) stoichiometric surfaces as well as Hf rich non-stoichiometric surfaces are non magnetic, and ii) O rich non-stoichiometric surfaces are ferromagnetic and often half metallic. The ferromagnetism found here is attributed to O surface electronic states with large O 2p spin exchange energy. Our finding provides a novel pathway to d^0 ferromagnetism for simple oxides with no magnetic ions involved. We further calculate the surface energy to discuss a possible reason for recent controversial observations of ferromagnetism in HfO_2 .

Background

- (1) Temperature ferromagnetism is important both in its potential spintronics application and scientific research.
- (2) Lots of controversial of d^0 ferromagnetism in HfO₂

Simulation Method


Density functional theory calculations with plane wave bases Code: VASP

*E*_{xc}: PAW GGA-PBE *k*-mesh: Monkhorst-Pack

Spin polarized calculation

 $E_{\rm cut}$: 500 eV

Surface: symmetrical slab

