

Fourfold Symmetry of Anisotropic Magnetoresistance in Epitaxial Fe₃O₄ Thin Films

C.R.Hu, J.Zhu, G. Chen, and Y.Z.Wu

Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433, P. R. China

I.INTRODUCTION

 \blacklozenge In high quality epitaxial Fe₃O₄ films grown on MgO(001) substrates, the Planar Hall effect (PHE) contains only a twofold angular dependence, but the anisotropic magnetoresistance (AMR) below 200K is constituted with both twofold and fourfold symmetric terms. The origin of the four-fold symmetry of AMR is either due to the symmetry of the lattice or the spin scattering near the antiphase

Sample:

- 1. MgO(001) substrate annealing at 600°C 10nm seed layer was grown at 500 °C.
- 2. Evaporating the Fe atoms at an oxygen pressure of $\sim 1 \times 10^{-5}$ Torr.
- 3. Patterned into the Hall geometry by two-step lithography.
- Measurement:

RHEED pattern of Fe_3O_4

II. EXPERIMENT STEPS

boundaries(APBs)?

Physical Property Measurement System

 $\rho_{\rm xv} = C_U^{PHE} \cos(\theta - \theta_U^{PHE}) + C_4 \sin\theta \cos\theta$

V. Out-plan AMR

IV. Antiphase boundaries(APBs)

Celotto, et. al., Eur. hys. J. B 36, 271(2003)

- 150 K - 120 K Four-fold is single rystal Fe₃O₄. R. Ramos, et. al., Phys. Rev. B 78, 214402 (2008). 280 320

Magnetic field rotational plan perpendicular to the current

AMR amplitude is quite The similar in both in-plan and out-plan measurements which indicates the four-fold symmetry of AMR is related to the cubic crystalline structure.

