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1. Background and Motivations

Recently using different material as the antenna substrate
to enhance efficiency and manipulate directivity has been
widely studied. However, some limitations still exist, such
as bulky for microwave applications, not easy to realize and
so on. In order to surpass these, the motivations are:

.

.

•Which kind of property does the substrate
need to possess in order to achieve high effi-
ciency and directivity? — Reflection Phase.

•Which structure can make it easy to realize
and not too complicated for application? —
Employ Metamaterial.
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2. The Role of Anomalous Refection Phase
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Origin of xyz: A point source
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Employ Green’s Function to calculate ~E field in Region 0:
~E(~r, ω) = iωµ0P0

↔
G00(~r, 0;ω) · α̂ (2.1)

in which α̂ is the polarized direction of point source, P0 is the

intensity of point source and
↔
G00(~r, 0;ω) is Green’s Function

in Region 0 (explicit form is in [1]).

2.1 Y-Polarization (α̂ = ŷ)

E field in the H-plane (y=0):

Ey(x, z;ω) ≈ −µ0ω0P0
8π2

∫
eikxx+ikzz

kz

k2x
k2‖

[
1 + RTE(~k‖)

]
(2.2)

in which RTE ≡ Er
‖/E

in
‖ and RTM ≡ Hr

‖/H
in
‖ . From

Eq.(2.2) it is obvious that radiation pattern depends on both
reflection amplitude |R| and reflection phase ϕ.

For convenience we assume R has the form |R|eiϕ, then

.

.

(a) If RTE = 1, i.e. |R| = 1, ϕ = 0, ~E has maxi-
mum value (PMC-like);

(b) If RTE = −1, i.e. |R| = 1, ϕ = π, ~E has mini-
mum value (PEC-like).
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2.2 Z-Polarization (α̂ = ẑ)
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Summary: If Reflection Phase provided by the
substrate strongly depends on the~kinc, then it can
achieve our goal — Directional Emission.
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3. Realizations

3.1 Y-Polarization — Employ Quasi-crystal[2].
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3.2 Z-Polarization — Employ Cross Structure.
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4. Conclusions

• Green Function predicts the existence of high efficiency and
directional emission of antenna radiations if the substrate pos-
sesses specific reflection phase.

• Two samples, namely Quasi-crystal and Cross structure, testify
our theory from both FDTD and experiment.

• Understanding the origin of this anomalous reflection phase is
required.
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