A chirality switching device designed with transformation optics

Yuan Shen, Kun Ding ${ }^{\dagger}$, Wujiong Sun, Lei Zhou
Physics Department, Fudan University, Shanghai 200433, China
${ }^{\dagger}$ datouding @fudan.edu.cn

1. Background

2.1 Existent solution - Illusion Optics

Motivations: Design a general
Transformation Mirror for 2-dim. case;
Chirality Switching Device for 3-dim. case.

2.2 Our solution

The operation of flipping space generates a transformation optical device which flips the light rays[1] — mirror effect?

2.3 Mathematic Details

Region I,II	$\frac{1}{2} a \leq-x \pm \frac{1}{2} y \leq a$	$\begin{aligned} & \mu=3 x+2 a-2\|y\| \\ & \nu=y \\ & \omega=z \end{aligned}$	$\overleftrightarrow{\epsilon}_{r}=\overleftrightarrow{\mu}_{r}=\frac{1}{3}\left(\begin{array}{cccc}5 & \pm 6 & 0 \\ \pm 6 & 9 & 0 \\ 0 & 0 & 9\end{array}\right)$
Region III,IV	$\frac{1}{2} a \leq x \pm \frac{1}{2} y \leq a$	$\begin{aligned} & \mu=3 x-2 a+2\|y\| \\ & \nu=y \\ & \omega=z \end{aligned}$	$\overleftrightarrow{\epsilon}_{r}=\overleftrightarrow{\mu}_{r}=\frac{1}{3}\left(\begin{array}{ccc}5 & \mp 6 & 0 \\ \mp 6 & 9 & 0 \\ 0 & 0 & 9\end{array}\right)$
Region V	$\|x\|+\frac{1}{2}\|y\| \leq \frac{1}{2} a$	$\begin{aligned} & \mu=-x \\ & \nu=y \\ & \omega=z \end{aligned}$	$\overleftrightarrow{\epsilon}_{r}=\overleftrightarrow{\mu}_{r}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$

3. Numerical Confirmation of Mirror Effect
3.1 What makes a mirror image

The criterions of substituting someone with his mirror image:
${ }^{2}$ Transforing light source to its symmetric point;
${ }_{3}$ Replacing incident rays with reflected rays.
3.2 2-dim. case - Transformation Mirror

Fig.(a,b): Source to symmetric point;
Fig.(c,d): Light rays reflected.

3.3 3-dim. case - Chirality Switching Device

Shrink along z-axis can extend 2-dim. device to 3-dim.[2]

4. Conclusions

- The design of transformation mirror is testified to be capable of reflecting point and light rays while hiding itself from the observer;
- The chirality switching device poses the possibility of transfering handedness by introducing a mirror plane into 3 -dim. space.

Published in Opt. Express 18, 21419 (2010).

References

[^0]
[^0]: [1] U. Leonhardt, Science 312, 1777 (2006); J. B. Pendry, and et. al., ibid. 312, 1780 (2006) [2] M. Rahm, and et. al., Phys. Rev. Lett. 100, 063903 (2008); L. Bergamin, Phys. Rev. A 78 043825 (2008); W. Yan, M. Yan and M. Qiu, arXiv [physics.optics]: 0806.3231 (2008).

