Experimental evidence for a human counterpart of the theory of fluctuations

Yuan Liang, Kenan An, and Jiping Huang

Department of Physics, Fudan University, Shanghai, 200433, China

Introduction

According to the theory of fluctuations in statistical mechanics, the fluctuation of an extensive quantity of a physical system is directly proportional to the number of constructive units inside the system, which we call the principle of proportionality. Nevertheless, such a system is a natural system whose constructive units are molecules without the adaptability to environmental changes due to the lack of learning ability. Here we attempt to investigate a social system whose constructive units are humans with the adaptability to environmental changes because of the presence of learning ability. For this purpose, we take a resource-allocation system as a model system. The system originates from the minority game, but can handle both unbiased and biased distributions of two resources, M_{1} and M_{2}. We investigate four cases with different numbers and different types of participants. As a result, we find that the fluctuation of the extensive quantity, namely, the number of participants choosing M_{1} or M_{2}, can also satisfy the principle of proportionality under a certain condition. As revealed, the underlying mechanism lies in the spontaneous sub-group cooperation arising from self-adaptive preference adjustment of selfish participants. It reveals a kind of universality between nature and society.

Method

>System A: 68 subjects

$>$ System B: 68 subjects + 55 imitators;
$>$ System C: 68 subjects +11 contrarians;
$>$ System D: 68 subjects + 55 imitators + 11 contrarians.

The most important parameter of the system is N_{i} ($\mathrm{i}=1$ or 2). Because N_{i} is directly proportional to the total number of participants in the system, it is naturally an extensive quantity. We define the fluctuation, σ^{2}, of N_{i} according to Eq. (2) as

$$
\begin{equation*}
\sigma^{2}=\left\langle\left(N_{1}-\widetilde{N}_{1}\right)^{2}\right\rangle=\left\langle\left(N_{2}-\widetilde{N}_{2}\right)^{2}\right\rangle \equiv \frac{1}{2} \sum_{i=1}^{2}\left\langle\left(N_{i}-\widetilde{N}_{i}\right)^{2}\right\rangle \tag{4}
\end{equation*}
$$

We obtain the fluctuation per participant as

Definition 1: $\quad \widetilde{N}_{i}=\left\langle N_{i}\right\rangle$
Definition 2: $\quad \frac{\left\langle N_{1}\right\rangle}{\left\langle N_{2}\right\rangle}=\frac{M_{1}}{M_{2}}$
(6), $\quad \widetilde{N}_{i}=\frac{M_{i}}{M_{1}+M_{2}} N$

Agent-based model

In statistical physics, a macroscopic quantity describing a system is the average of the relevant microscopic quantity, A , over all possible microstates, $\langle\mathrm{A}\rangle$, under given macroscopic conditions. Namely, this average <A> is given by
$\langle A\rangle=\sum \rho_{s} A_{s}$
where ρ_{s} is the probability when the system lies in the s-th microstate, and A_{s} is the value of A at the s th microstate. Then, the fluctuation of A is defined as

$$
\sigma_{0}^{2}=\left\langle\left(A_{s}-\langle A\rangle\right)^{2}\right\rangle=\sum_{s} \rho_{s}\left(A_{s}-\langle A\rangle\right)^{2}
$$

According to the theory of fluctuations, it is known that the fluctuation ($\sigma_{0}{ }^{2}$) of an extensive quantity (say, volume or mass) of a physical system is directly proportional to the number (n_{0}) of constructive units inside the system, i. e.,

$$
\begin{equation*}
\frac{\sigma_{0}^{2}}{n_{0}}=c_{0} \tag{3}
\end{equation*}
$$

where c_{0} is a non-zero constant. We call Eq. (3) the principle of proportionality. Nevertheless, this system is a natural system whose constructive units are molecules without the adaptability to environmental changes. The interactions between such molecules can be described by classical forces Here we attempt to raise a question: does this equation have a counterpart in social systems? We experimentally investigate four resource-allocation systems involving different numbers and different types of participants[1-3]

Results

Figure 1. Fluctuation per participant σ^{2} / N of Systems. (a) Experiment: σ^{2} / N of Systems A, B, C, D for $M_{1} / M_{2}=1$ and 3. N_{i} was determined by Eq. (1). (b) Experiment: Same as (a), but N_{i} was determined by Eq. (7) instead. (c) Simulation: σ^{2} / N of Systems A, B, C, and D for $M_{1} / M_{2}=1$ and 3. (d) Simulation: Same as (c), but β_{1} and β_{2} are different. (e) Simulation: $\beta_{1}-\beta_{2}$ contour plot for σ^{2} / N at $M_{1} / M_{2}=1$. (f) Simulation: σ^{2} / N of System A, as a function of N_{n} for $M_{1} / M_{2}=1$ and 3 .
(a) $M_{1} / M_{2}=1, \beta_{1}=0, \beta_{2}=0$

(e) $M_{1} M_{2}=3, \beta_{1}=0, \beta_{2}=0$

(b) $M_{1} / M_{2}=1, \beta_{1}=0.8, \beta_{2}=0$

(f) $M_{1} M_{2}=3, \beta_{1}=0.8, \beta_{2}=0$ System B
(C) $M_{1} / M_{2}=1, \beta_{1}=0, \beta_{2}=0.16$

(g) $M_{1} M_{2}=3, \beta_{1}=0, \beta_{2}=0.16$

(h) $M_{1} M_{2}=3, \beta_{1}=0.8, \beta_{2}=0.16$

Preference	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
\square Normal: Room 1	49%	28%	44%	25.6%	71.1%	37.6%	71.6%	36.9%
\square Normal: Room 2	51%	27%	42.1%	25.2%	28.9%	17.7%	14.5%	13.9%
Imitator: Room 1	-	23%	-	20.6%	-	35.4%	-	35.3%
\square Imitator: Room 2	-	22%	-	20.4%	-	9.3%	-	5.8%
\square Contrarian: Room 1	-	-	6.8%	3.9%	-	-	0.2%	1.1%
\square Contrarian: Room 2	-	-	7.1%	4.3%	-	-	13.7%	7.2%

Figure 2. The average preference of all kinds of participants for Systems A, B, C, D under two resource ratios. The red line on each pie chart is used to divide the preference to Room 1 and 2.

References:

