Renormalized Phonon in FPU-B Model

Junjie Liu, Chang-qin Wu Department of Physics, Fudan University, Shanghai, China

Introduction

Model Hamiltonian:

$$H = \sum_{n=1}^{N} \left[\frac{P_n^2}{2M} + \frac{1}{2} (x_{n+1} - x_n)^2 + \frac{\beta}{4} (x_{n+1} - x_n)^4 \right]$$

N: Particle number

M: Particle mass x: Displacement P: Momentum

B: Strength of nonlinearity

Mechanism and heat carrier?

Anomalous heat conduction[1]:

(heat conductivity) $\kappa \propto N^{\alpha}$ $0 < \alpha < 1$

Effective Phonon Theory [2]:

Heat carrier is the renormalized phonon with dispersion $\Omega_k = \sqrt{\lambda} \, \omega_k$

with
$$\lambda = 1 + \frac{\beta \langle (x_{n+1} - x_n)^4 \rangle}{\langle (x_{n+1} - x_n)^2 \rangle}$$
 and $\omega_k = \frac{2}{\sqrt{M}} \left| \sin \frac{k}{2} \right|$.

Does renormalized phonon exist?

Numerical Simulation Results [3]

1. Power spectrum(N=64,T=0.2, β =1, M=1)

3. Mean free path(N=2048,T=0.2, β =1, M=1)

Divergent MFP results in anomalous heat conduction!

2. Dispersion(N=2048,T=0.2, β =1, M=1)

Summary:

- (1). Renormalized phonon does exist in FPU-\(\beta\) model.
- (2). Anomalous heat conduction is induced by longwavelength mode with divergent mean free path.

Reference:

- [1]. A.Dhar, Adv.Phys. 57, 457(2008)
- [2]. N.Li and B.Li, AIP Advances 2, 041408(2012)
- [3]. S.Liu et al, unpublished