

Superconductivity at 2.5 K in new transition-metal chalcogenide Ta, PdSe,

J. Zhang¹, J. K. Dong^{1,2,*}, Y. Xu¹, J. Pan¹, L. P. He¹, L. J. Zhang², and S. Y. Li^{1,2,3,*}

1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China 2 Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China 3 Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, P. R. China

netization, and specific heat reveal that Ta₂PdSe₅ is a bulk superconductor with $T_c \sim 2.5$ K. The zero-field electronic specific heat in the superconducting state can be fitted with a two-gap BCS model. The upper critical field H₂ shows a linear temperature dependence, and the value of $H_{c2}(0)$ is much higher than the estimated Pauli limiting field H_{c2}^{p} and orbital limiting field H_{c2}^{orb} . All these results of specific heat and upper critical field suggest that Ta₂PdSe₅ is a multi-band superconductor.

Synthesis

The polycrystalline samples of Ta₂PdSe₅ were synthesized by a conventional solid state reaction method with the starting materials of Ta, Pd, and Se powders.

Figure 1 shows the powder X-ray diffraction (XRD) pattern of Ta₂PdSe₅, in which most of the peaks can be well indexed to a monoclinic structure with space group C2/m. From the refinement, $Ta_{2}PdSe_{5}$ is recognized as the main phase, with a small amount of Pd_7Se_4 impurity. A perspective view of the Ta₂PdSe₅ crystal structure along b-axis direction is shown in the inset of Fig. 1.

$Nb_2Pd_{0.81}S_5$	6.6	37	5.6
$Nb_2Pd_{0.74}Se_5$	5.0	35	5.9
$Ta_2Pd_xS_5$	5.4	31	5.7
Ta_2PdSe_5	?	?	?

Recently, a new quasi-one-dimentional (Q1D) transition-metal chalcogenide $Nb_{2}Pd_{0.81}S_{5}$ was synthesized, in the monoclinic space group C2/m. It becomes a superconductor below the transition temperature $T_c \sim 6.6$ K. Later, the two existing compounds Ta₂PdS₅ and Nb₂PdSe₅ with the same crystal structure, were also found to be superconducting below 6 K and 5.5 K, respectively. All these three compounds display extremely high and anisotropic H_{c2} , suggesting a new family of exotic superconductors $T_2 PdCh_5$ (T = Nb or Ta, Ch = S or Se).

Fig. 1: X-ray diffraction pattern of a Ta₂PdSe₅ polycrystalline sample measured at room temperature.

Discussion & Summary

As the magnetic field increases, T_{a} decreases and the superconducting transition broadens. $H_{c2}(T)$ versus T/T_{c} is shown in Fig. 4(b). The linear temperature dependence of $H_{c2}(T)$ was previously observed in two-band superconductor MgB₂. Therefore, we ascribe the temperature dependence of linear observed to the multi-band $H_{c2}(T)$

Fig. 2: (a) Low-temperature dc magnetization of Ta₂PdSe₅. (b) Temperature dependence of the resistivity. The inset shows the superconducting transition at low temperature.

Fig. 3: (a) Temperature dependence of specific heat divided by temperature C_{r}/T . (b) Reduced temperature T/T_{c} dependence of electronic specific heat divided by temperature C_{c}/T .

The diamagnetic signal reveals a superconducting transition with the onset T_c at about 2.6 K. $\rho(T)$ displays metallic behavior with a residual resistivity ratio RRR \sim 3.3. A clear drop of resistivity is observed, corresponding to the superconducting transition.

 C_p/T shows an anomaly around 2.5 K in zero field and the zero-field electronic specific heat C_{T} obtained by subtracting the lattice terms from C_{r} . The bulk nature of the superconductivity in Ta₂PdSe₅ is confirmed by the significant jump of C_{r}/T . We fit C_{r}/T in the superconducting state with the BCS twogap model with $\alpha_1 = 0.56$ and $\alpha_2 = 2.08$. This result is consistent with the band structure calculation of T_2 Pd Ch_5

Fig. 4:(a) Low-temperature resistivity $\rho(T)$ of Ta₂PdSe₅ in various magnetic fields up to 14 T. (b) Reduced temperature T/T_c dependence of the upper critical field $H_{c2}(T)$.

Summary:

effect.

In summary, a new transition-metal chalcogenide compound Ta₂PdSe₅ was first synthesized. Measurements of resistivity, magnetization and specific heat revealed that Ta₂PdSe₅ is a superconducting material with $T_c \sim 2.5$ K. This compound displays a remarkably high $H_{c2}(0)$ relative to its T_{c2} . Both the fit of C_{r}/\tilde{T} and the linear temperature dependence of H_{c2} indicate multi-band superconductivity in Ta₂PdSe₅.

Reference

[1] Zhang Q., et al., Sci. Rep., 3 (2013) 1446. [2] Matsuda Y., et al., J. Phys. Soc. Jpn., 76 (2007) 051005. [3] Khim S., et al., New J. Phys., 15 (2013) 123031. [4] Lu Y., et al., J. Phys. Soc. Jpn., 83 (2014) 023702. [5] Yu H., et al., J. Am. Chem. Soc., 135 (2013) 12987. [6] Singh David J., arXiv:1504.01333, (2015).

arXiv:1412.6983 (2014).