

2017 Annual Meeting of Department of Physics

Fully gapped superconducting state in Au₂Pb: A natural candidate for topological superconductor

Y. J. Yu¹, Y. Xu¹, Y. Xing^{2,3,4}, J. Zhang¹, T. P. Ying¹, X. C. Hong¹, M. X. Wang¹, X. Zhang^{2,4}, S. Jia^{2,4}, J. Wang^{2,4}, and S. Y. Li^{1,5}

¹ State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University - Shanghai 200433, China

² International Center for Quantum Materials, School of Physics, Peking University - Beijing 100871, China

³ Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum Beijing 102249, China

⁴ Collaborative Innovation Center of Quantum Matter - Beijing 100871, China

⁵ Collaborative Innovation Center of Advanced Microstructures - Nanjing 210093, China

We measured the ultra-low-temperature specific heat and thermal conductivity of the Au₂Pb single crystal, a possible three-dimensional Dirac semimetal with a superconducting transition temperature $T_c \approx 1.05$ K. The electronic specific heat can be fitted by a two-band s-wave model, which gives the gap amplitudes $\Delta_1(0)/k_BT_c = 1.41$ and $\Delta_2(0)/k_BT_c = 5.25$. From the thermal conductivity measurements, a negligible residual linear term κ_0/T in zero field and a slow field dependence of κ_0/T at low field are obtained. These results suggest that Au₂Pb has a fully gapped superconducting state in the bulk, which is a necessary condition for topological superconductors if Au_2Pb is indeed one.

Introduction

Recently, it was argued that the cubic Laves phase Au₂Pb ($T_c \approx 1.2$ K) may be a natural topological superconductor (TSC) candidate [1,2]. Electronic band structure calculations predicted that cubic Au₂Pb has a bulk Dirac cone at room temperature [1]. With decreasing temperature, Au₂Pb undergoes structural phase transitions, and only the orthorhombic phase remains below 40K [1]. Their calculations showed that the structure transition gaps out the Dirac spectrum in the high-temperature phase, and results in a low-temperature nontrivial massive 3D Dirac phase with $Z_2 = -1$ topology [1]. In ref. [2], the first principles calculations also point to the nontrivial topology of the orbital texture near the dominant Fermi surfaces, which suggests the possibility of topological superconductivity. To check whether Au₂Pb is indeed a TSC, it will be very important to determine its superconducting gap structure first.

XRD and resistivity measurements

The study of bulk superconducting gap

• The electronic specific heat C_e/T extrapolates to a negligible value at ultra-low temperature, and can be fitted by a two-band s-wave model very well.

• The residual linear term κ_0/T is negligible and the normalized field dependence is somewhat like that of the dirty s-wave superconductor InBi.

Conclusions

- >The ultra-low-temperature specific heat and thermal conductivity results have demonstrated that Au₂Pb is a fully gapped superconductor, which meets the condition of TSCs.
- analysis of the electronic specific heat suggests a multigap ►The

References

[1] L. M. Schoop *et al.*, Phys. Rev. B **91**, 214517 (2015). [2] Y. Xing *et al.*, npj Quantum Materials, **1** 16005 (2016).

Y. J. Yu *et al.*, Europhys. Lett. **116**, 67002 (2016).

