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Abstract

Hybrid organic-inorganic compounds attract a lot of interest for their flexible structures and multifunctional properties. For example, they can

have coexisting magnetism and ferroelectricity whose coupling gives rise to magnetoelectricity. Here we show that, in a perovskite metal-organic

framework (MOF), the magnetic and electric orders are further coupled to optical excitations, leading to an electric tuning of the Magneto-Optical

Kerr effect (MOKE). Moreover, the Kerr angle can be switched by reversal of both ferroelectric and magnetic polarization only. The interplay

between the Kerr angle and the organic-inorganic components of MOFs offers surprising unprecedented tools for engineering the Kerr effect in

complex compounds.
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Figure 1: Schematic diagram of the Kerr effect and its switching upon reversal of the

magnetization in a ferromagnetic(FM) sample. Very often, a FM material is metallic

and thus has no electric polarization. Therefore, an electric tuning of MOKE has

long been overlooked.
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Figure 2: Crystal structure of [C(NH2)3]Cr[(HCOO)3], i.e., a perovskite ABX3-type

Cr-MOF, blue octahedrons are CrO6 units. It is a multiferric material, and the cross

coupling between electric polarization and magnetism enables an electric tuning of

MOKE.

-0.2

-0.1

0.0

0.1

0.2

-1 -0.5  0  0.5  1
-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

∆E = 0.37eV

Pλ = 1 = 0.22 µC/cm2
Mz,λ = 1 = 1.4 µB

P
to

t(µ
C

/c
m

2 )

M
z(

µ B
)

λ
Figure 3: Variation of the total energy (orange triangles), the ferroelectric polarization

P (red circles) and magnetism Mz component (blue squares) as a function of normal-

ized amplitude of the polar distortion λ. There is a one-to-one correspondence say

λ-P-Mz.
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Figure 4: (a) Variation of the Kerr rotation as a function of the incident photon en-

ergy at different values. (b) Some maxima and minimum are shown as a function

of ferroelectric polarization. The sign of the Kerr rotation can be switched by the

ferroelectric polarization via an external electric field.
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Figure 5: Kerr rotation as a function of both the normalized P and M at E = 3.82 eV. The

solid orange line represents the locus of points in the (P, M) space having zero Kerr

angle. The solid black curve is the magnetoelectric curve, showing an cooperative

electric-magneto-optical Kerr effect(EMOKE).

Conclusions

•The Kerr angle in Cr-MOF can be swtiched by external electric field;

•Only when both electric and magnetic polarizations are reversed, can

the Kerr angle be reversed;

•A ferroelectric antiferromagnetic may be useful for data storage with

electric writing and optical reading.


