Prediction of a strongly ferromagnetic layered insulator Sr₂NiRuO₄

Ke Yang, Fengren Fan and Hua Wu^*

Laboratory for Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
Collaborative Innovation Center of Advanced Microstructures, Nanjing, China

Abstract

A magnetic insulator is often antiferromagnetic, and a layered one normally has a low ordering temperature. Here we predict a surprising strong ferromagnetism (FM) in the layered insulator Sr_2NiRuO_4 , using density functional calculations and spin-lattice Monte Carlo simulations. Our results show that Sr_2NiRuO_4 is in the S=1/2 Ni⁺ and S=3/2 Ru³⁺ state. A strong intralayer FM coupling and a relatively weak interlayer FM one are demonstrated by density functional calculations, and using these exchange parameters, our Monte Carlo simulations give a high Tc of 240 K. All these results are in line with analyses of the crystal field level diagrams and the spin-orbital states of the square planar Ni⁺ (S=1/2) and Ru³⁺ (S=3/2) ions. This work highlights a potential of unusual charge-spin-orbital states in producing novel magnetoelectric properties.

Results and Discussion

FIG. 1: (a) Crystal structure of the layered Sr_2NiRuO_4 .

(a) Ni⁺ (b) Ru³⁺

Sr ₂ NiRuO ₄		ΔΕ	Tot	Ni	Ru
LSDA	FM	0	3.53	0.90	1.74
	A-AFM	18	0.00	0.82	1.65
	C-AFM	A-AFM			
LSDA+U	FM	0	4.00	1.13	2.09
	A-AFM	20	0.00	1.14	2.06
	C-AFM	162	0.00	0.74	1.95

Table. 1: Relative total energies ΔE (meV/f.u.), total and local spin moments (μ_B) of the FM, A-AFM, and C-AFM states calculated by LSDA and LSDA+U. J_{ab} = -27.0 meV and J_c = -6.67 meV are estimated.

FIG. 2: Schematic crystal field level diagrams of (a) Ni⁺ S=1/2, (b) Ru³⁺ S=3/2. Electron hoppings from Ni⁺ to Ru³⁺ would yield a FM order.

FIG. 4: Monte Carlo simulations of magnetization and magnetic susceptibility of Sr_2NiRuO_4 as a function of temperature. Tc is 240 K.

FIG. 3: (a) Ni 3d and (b) Ru 4d DOS of Sr_2NiRuO_4 calculated by LSDA+U. The blue (red) curves stand for the up (down) spin channel. Fermi level is set at zero energy.

Conclusions:

- (1) The layered insulator Sr_2NiRuO_4 has magnetic Ni⁺ (S=1/2) and Ru³⁺ (S=3/2) ions.
- (2) A strong intralayer FM coupling and a relatively weak interlayer FM one determine a high Tc via the special charge-spin-orbital states.