Proximity effect of Bismuth films probed by scanning tunneling microscope

C. Chen^{1*}, Q. Liu^{1*}, M. Q. Ren¹, W. Chen¹, R. Tao¹, X. Liu¹, Y. J. Yan^{1,2}, T. Zhang^{1,2}, D. L. Feng^{1,2*}

¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China ² Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China

I. Introduction & Motivation **Motivation Bismuth structure** • Obtain Bismuth thin films on a (pm 410 superconducting substrate Study the proximity effect of lacksquareBismuth with superconductor Study the edge state ullet2,000 Probe for the possible Majorana ulletI.K. Drozdov, Nature Physics, 10 (2014). fermions J.T. Sun et al, Phys Rev Lett, 109 (2012).

II. Experiments

NbSe₂ substrate

Proximity effect of superconductivity

Vortex measurement on Bi surface

12

10

Topography of Bi surface

Vortex | linecut

2T

1.5T

1.2T

0.8T

1T

0.5T **>**p 0.4T 0.3T 0.2T 0.1T -4 -3 -2 -1 Bias(mV) Bias (mV) Vortex is detected on the surface of the Bi thin films. The U-shaped gap

is gradually suppressed when applying a magnetic field up to 2 T.

We obtain both (110)&(111) surface of Bismuth films on NbSe₂ substrate.

III. Conclusions

Vortex @0.4K @0.6T

 \triangleright Obtain Bismuth films with different thickness on NbSe₂ substrate. U-shaped gap is observed on both (110)&(111) surface of Bismuth films.

Vortex is measured on Bismuth thin films.

