Conformational ensembles of Aβ₁₋₄₂ dimer and its Dutch E22Q mutant in Alzheimer disease

Yibo Jin^a, Yunxiang Sun^a, Buyong Ma^b, Ruth Nussinov^{bc} and Guanghong Wei^a

a State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences and Department of Physics, Fudan University, Shanghai, China b Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA c Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Introduction

Alzheimer's disease is associated with the aggregation of amyloid- β (A β) peptides into toxic prefibrillar aggregates^[1,2]. Previous studies reported that the A β_{1-42} dimer was the smallest toxic species in Alzheimer's disease^[3] and the dutch E22Q mutant was much more toxic than A β_{1-42} ^[4]. Inverstigating the dimeric structures of A β_{1-42} and its E22Q mutant is crucial for understanding their different cytotoxicity. However, due to the transient nature of oligomers, the atomic-level structures of

Neurotoxicity in PC12 cells of Aβ derivatives estimated by the MTT assay		100-	
$A\beta$ derivatives	IC_{50}	_	
	$\mu_M \pm S.D.$	8 80-	
Aβ40 (Wild-type)	> 100	9	
$21G-A\beta 40$ (Flemish)	> 100		E22K
$22Q-A\beta 40$ (Dutch)	3.4 ± 0.91	2 60-	
22 K-A β 40 (Italian)	11 ± 2.2		
$22G-A\beta 40$ (Arctic)	11 ± 2.2	ĕ	
$3N-A\beta 40$ (Iowa)	78	80 40-	E226
$22P-A\beta 40$	8.0 ± 0.72	5 40	17/ ///
342 (Wild-type)	0.97 ± 0.18	60	E220
$21G-A\beta 42$ (Flemish)	1.7 ± 0.30	< Þ	17 - 1
$2Q-A\beta 42$ (Dutch)	0.068 ± 0.012	201	
22K-Aβ42 (Italian)	0.14 ± 0.030		wild-type
$2G-A\beta 42$ (Arctic)	0.14 ± 0.050		
023N-Aβ42 (Iowa)	0.38 ± 0.16	0	* '
$E22P-A\beta 42$	0.084 ± 0.011	0 4 8	16 24
Ε22V-Αβ42	>100		Incubation time (hr)

Aβ42 E22Q mutant shows most serious neurotoxic effect^[4]

Aβ42 E22Q mutant shows strong aggregation effect^[4]

 $A\beta_{1-42}$ dimer and its E22Q mutant are largely unknown.

Materials and Methods

Systems: $A\beta_{1-42}$ dimer: 1IYT (PDB:ID)

 $A\beta_{1-42}$ E22Q dimer: 1IYT only with E22Q mutation **Amino Acid Sequence of** $A\beta_{1-42}$:

NH₃⁺-DAEFRHDSGY¹⁰EVHHQKLVFF²⁰AEDVGSNKGA³⁰ IIGLMVGGVV⁴⁰IA-COO⁻

Simulation Method: REMD in NPT ensemble, P: 1 bar

Temperature: 308.5-406.2 K, Box size: 7.0*7.0*7.0 nm

Force Field: Amber99sb-ILDN

Water Model: TIP3P

Software Packages: Gromacs-4.5.3 and VMD

Results

1. Convergence check for $A\beta_{1-42}$ dimer and E22Q dimer.

4. Clusters are different between $A\beta_{1-42}$ dimer and its E22Q mutant.

(A) $A\beta_{1-42}$ dimer

Time (ns) Time (ns) Time (ns) **Figure 1**. Time evolution of secondary structure.

2. The average secondary structure propensity and residuebased β -sheet propensity are different between $A\beta_{1-42}$ dimer and E22Q dimer.

Figure 2. Average secondary structure propensity and β -shee probability of each residue of A β_{1-42} dimer and E22Q.

3. Free energy landscape of $A\beta_{1-42}$ dimer and its E22Q mutant.

Figure 4. Representative conformations of the top eight most-populated clusters for (A) $A\beta_{1-42}$ dimer and (B) E22Q mutant dimer.

Conclusions

We find that the average β -sheet probability for $A\beta_{1-42}$ dimer is 16%, while it is only 8% for its E22Q mutant. The $A\beta_{1-42}$ dimer has a preference to form long β -sheet, but its E22Q mutant preferentially forms short β -sheet. This study provides insights into the equilibrium structure of the $A\beta_{1-42}$ dimer and its E22Q mutant in aqueous solution, opening a new avenue for a comprehensive understanding of the impact of pathogenic and protective mutations in early-stage Alzheimer's disease on a molecular level.

References

Soto C, Sigurdsson E M, et al. *Nat. Med.*, 4(7): 822-826 (1998).
Murakami K, et al. *J. Neurosci.*, 7, 25(50): 11693-11709 (2005).

Figure 3. Free energy surfaces (in kcal/mol) as a function of the

total number of H-bonds and the radius of gyration of the dimer.

3. Schmidt M, Rohou A, et al. *PNAS*, 112(38): 11858-11863 (2015).

4. Murakami K, Irie K, et al. J. Biol. Chem., 278(46): 46179-46187(2003).