Broken time-reversal symmetry in superconducting partially-filled skutterudite $Pr_{1-\delta}Pt_4Ge_{12}$

J. W. Zang,¹ J. Zhang,¹ Z. H. Zhu,¹ Z. F. Ding,¹ K. Huang,¹ X. R. Peng,¹ A. D. Hillier,² and L. Shu^{1,3}

¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China ²ISIS Facility, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot *OX11 0QX, UK*

³Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People's Republic of China

Background

 \succ The superconducting gap structure in PrPt₄Ge₁₂ is controversial: Point node?[1]? BCS[2]? Multiband[3][4]?

 \succ It is puzzling that time reversal symmetry (TRS) breaks at temperature $T_m < T_c$.

Motivations

A study of an imperfectly filled skutterudite $Pr_{1-\delta}Pt_4Ge_{12}$ to investigate;

(i) whether the cage-forming structure and superconductivity survive with partially filled ¹⁴¹Pr nuclei; (ii) the effect of the insufficient filled ¹⁴¹Pr nuclei on TRS breaking in PrPt₄Ge₁₂

(iii) the gap symmetry of $Pr_{1-\delta}Pt_4Ge_{12}$ and implications of the superconducting order parameter of $PrPt_4Ge_{12}$.

(a) Magnetic susceptibility of the sample (b) Specific FIG. 1 heat data of the sample displayed as C_p/T versus T^2 .

> Superconductivity is observed below $T_c = 7.80$ K, the same as PrPt₄Ge₁₂.

(a) Zero-field μ SR time spectra at 12 K (red cir-FIG. 3 cles) and 0.6 K (blue squares) for the sample. A background signal has been subtracted from the data. The corresponding solid lines are fits according to Eq. (3), where λ was fixed at 0 μs^{-1} . (b) Temperature dependence of the muon spin relaxation rates σ (red circles) and Λ (blue triangles). σ was derived from the fitting of Eq. (3) with Λ fixed at 0.08 μs^{-1} . The red curve is the fit of Eq. (5). The blue line denotes the average of Λ data from 0 to 13 K.

$$P_{\mu}(t) = G_{z}^{K-T}(\sigma, \lambda, t) \exp(-\Lambda t).$$
(3)

Temperature dependence of the electronic specific FIG. 2 heat coefficient of $Pr_{1-\delta}Pt_4Ge_{12}$ at zero field. The curves represent the fits using six different gap models. Inset: the critical fields H_{c2} derived from the midpoints of the jump in C_p/T . The green curve is the fit of Eq. (1) to data.

 $\mu_0 H_{c2}(T) = \mu_0 H_{c2}(0) \frac{1 - t^2}{1 + t^2}, \quad (1)$

> Temperature dependence of both the upper critical field and the electronic specific heat can be described in terms of a two-gap model: evidence of multi-band superconductivity.

$$G_{z}^{K-T}(\sigma,\lambda,t) = \frac{1}{3} + \frac{2}{3}(1 - \sigma^{2}t^{2} - \lambda t)\exp(-\frac{1}{2}\sigma^{2}t^{2} - \lambda t)(4)$$
$$\sigma_{n}, T > T_{c}, (5)$$
$$[\sigma_{n}^{2} + \sigma_{e}(T)^{2}]^{1/2}, T < T_{c}, (5)$$

 $\succ \sigma_{e}(0)/\gamma_{\mu}$ in $Pr_{1-\delta}Pt_{4}Ge_{12}$ is 0.077(4) mT, nearly half of that (0.141 mT) in $PrPt_4Ge_{12}$.

Conclusions

- \succ The [Pt₄Ge₁₂] cage-forming structure survives and superconductivity is observed below T_c = 7.80 K.
- \succ The temperature dependence of Hc_2 and the electronic specific heat are well described by the twoband model.
- > The onset of broken TRS is observed at $T_m < T_c$, possibly due to the appearance of a second phase, while no obvious specific jump is observed around T_m . $\succ \sigma_{e}(0)/\gamma_{\mu}$ in $Pr_{1-\delta}Pt_{4}Ge_{12}$ is half of that in $PrPt_{4}Ge_{12}$, indicating that the¹⁴¹Pr nuclei or Pr-Pr intersite interactions are responsible for broken TRS.

