Muon Spin Relaxation Study on Quantum Spin Liquid Candidate $H_3Lilr_2O_6$

Annual Academic Conference of Dept. Physics, Fudan University, 2019

Y-X. Yang¹, Z-H. Zhu¹, C-S. Chen¹, Q. Wu¹, Z-F. Ding¹, C. Tan¹, P. K. Biswas², A. D. Hillier², C. Liu³, J-W. Mei³, L. Shu¹

¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai, 200433, China ²ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom ³Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China

Motivations

 \succ H₃Lilr₂O₆ has been proposed as a quantum spin liquid (QSL) candidate according to NMR and specific heat.

 \succ The honeycomb lattice is an excellent system to study the kitaev model which can be exactly solved.

 \geq We carried out zero/longitudinal field muon spin relaxation (ZF/LF- μ SR) to investigate the ground state of H₃Lilr₂O₆.

Muon spin relaxation spectra and fitting parameters

ZF-µSR

LF-µSR: Temperature scan

LF-µSR: Field scan

FIG. 1 (a) ZF-µSR spectra at selected (b) temperatures. Temperature dependence of muon spin relaxation rates. (c) Temperature dependence of initial asymmetries

FIG. 2 (a) LF-µSR spectra at selected temperatures with a longitudinal field of 100 mT. (b) Two muon spin relaxation rates indicate two unequivalent muon sites in $H_3LiIr_2O_6$. (c) Initial asymmetries versus T.

FIG. 3 Time-field scaling of LF-µSR $A(t) \sim t/H^{0.35}$ at 0.1 K. Inset: ZF- and LF- μ SR spectra at 0.1 K.

ZF-µSR

> No evidence of magnetic order was found since neither oscillations nor a drastic drop of initial asymmetry appears.

LF-µSR: Temperature scan

- > The dynamic properties become clear under external field.
- Fitting function (FIG. 2a):
- Muon relaxation is dominated by dynamic fluctuations at low T.
- Existence of static random fields (nuclear dipole moments).

\succ Fitting function (FIG. 1a): $A(t) = A_1 \exp(-\lambda_1 t) G_Z^{KT}(\delta_1, t) + A_2 \exp(-\lambda_2 t) + A_2$ $A_{3} \exp(-\lambda_{3}t) G_{Z}^{KT}(\delta_{3},t) + A_{4}$

- \succ As shown in FIG. 1 (b), drastic increases of λ_{α} below T_{α} (2) ~ 4 K) are observed, with $\alpha = 1, 2, 3$.
- \succ The low temperature plateaus of λ_{α} exclude the spin glass state and indicate the persistent spin dynamics (PSD).

Supplements

 $A(t) = A_1 \exp(-\lambda_1 t) + A_2 \exp(-\lambda_2 t) + A_{\text{const}}$ $\succ A_1: A_2 \approx 2:1 \ (N_{\text{Li}-\text{Ir}}: N_{\text{Ir}-\text{Ir}} = 2:1).$

 \succ The low temperature plateaus of both λ_1 and λ_2 indicate that PSD take place even under $\mu_0 H$ =100 mT magnetic field applied.

LF-µSR: Field scan

- Strong spin fluctuations.
- \succ Time-field scaling in μ SR spectra : a signature of slow spin dynamics.

Conclusions

- Absence of magnetic order.
- \blacktriangleright PSD at low temperatures.
- Slow spin dynamics are observed from time-field scaling μSR.
- \geq ZF/LF-µSR results suggest the QSL state of H₃Lilr₂O₆.

Acknowledgements:

Supported by the National Key Research and Development Program of China (No. 2017YFA0303104 and No. 2016YFA0300503), and the National Natural Science Foundation of China under Grant No. 11774061.

