The coexistence of superconductivity and magnetism in NdO_{0.5}F_{0.5}BiS_{2:} A muon spin rotation study

Chen Changsheng¹, J. Zhang¹, Z. F. Ding¹, C. Tan¹, O. O. Bernal², P.-C. Ho³, D. E.

Maclaughlin⁴, L. Shu¹

¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China

²Department of Physics and Astronomy, California State University, Los Angeles, California 90032, USA

³Department of Physics, California State University, Fresno, California 93740, USA

⁴Department of Physics and Astronomy, University of California, Riverside, California 92521,

USA

The superconductivity in BiS₂ based layered compounds Bi₄O₄S₃ and $REO_{0.5}F_{0.5}BiS_2$ (RE=La, Nd, Pr, Ce, and Yb) has attracted much interest, since these compounds are layered in structure and similar to that of high T_c cuprates and Fe-pnictides. It is interesting that Tc of LaO_{0.5}F_{0.5}BiS₂ increases from 2.7 K to above 5 K when La is replaced by Nd. Similarly, Tc of LaFeAsO goes from 27 K to above 50 K. We have performed muon spin rotation measurements on ambient-pressure-grown polycrystalline NdO_{0.5}F_{0.5}BiS₂ down to 0.025k to investigate the relationship between superconductivity and magnetism in this compound. And this is the first time that a possible magnetic phase transition has been observed at low temperatures (below 1K).