$\mu SR \ Study \ on \ Triangular \ Lattice \ Spin \ Liquid \ Candidate \\ NaYbSe_2$

Z-H. Zhu¹, Y-X. Yang¹, C-S. Chen¹, B-L. Pan¹, Q. Wu¹, C. Tan¹, Z-F. Ding¹, P. K. Biswas², A. D. Hillier², S-Y. Li^{1,3}, L. Shu^{1,3} ¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China ²ISIS Facility, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0QX, UK

³Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People's Republic of China

- Triangular lattice spin liquid candidate YbMgGaO₄ was found to exist exchange disorder between Mg²⁺ and Ga³⁺[1].
- The structure of NaYbSe₂ is free of exchange disorder [2].
- No phase transition down to 50 mK from results of specific heat and magnetic susceptibility[2].

2. LF-\mu SR

Fitting function:
$$a(t) = A_1 e^{-(\lambda t)^{\beta}} + A_2 \left[\frac{2}{3} (1 - \sigma^2 t^2) e^{-\frac{1}{2}\sigma^2 t^2} + \frac{1}{3} \right] + B$$

- $\succ \beta \sim 1.$
- > Total asymmetry varies for small geometrical change under strong field.
- \succ Static field is suppressed by 50 Oe.
- Dynamic field is suppressed by more than 1 kOe.

Experiments

μSR is a sensitive method to detect local static or dynamic magnetic field.
 Many plate single crystals are aligned along their *c*-axis.
 Zero field μSR (ZF-μSR) down to 88 mK is performed to check if there is magnetic order.
 Longitudinal field μSR (LF-μSR) under different magnetic fields along *c*-axis at 0.1 K is performed to tell the spin is dynamic or static.

Results

1. ZF-µSR

- > Fitting function: $a(t) = A_1 e^{-(\lambda t)^{\beta}} + A_2 \left[\frac{2}{3} (1 \sigma^2 t^2) e^{-\frac{1}{2}\sigma^2 t^2} + \frac{1}{3} \right]$
- > 1st term: stretched exponential, dynamic (spin-liquid-like).
- $\geq 2^{nd}$ term: Kubo-Toyabe (KT), static (nuclear moment or spin-glass-like) [5].
- Constant background subtracted (silver sample holder).
- Neither oscillation of asymmetry (long-range-order) nor initial asymmetry loss (short-range-order) observed.
- With decreasing temperature, the 1st term changes from Gaussian ($\beta = 2$) to Lorentzian form ($\beta = 1$).
- > Temperature independent regime of λ below 0.2 K: persistent spin dynamics.
- Increase of A₂ and significant increase of σ: spin-glass-like freezing below 6 K.

Fig. 4. **Results of LF-µSR at 0.1 K.** The magnetic field is parallel to the *c*-axis. **a.** Asymmetry spectra under different fields. **b.** Temperature dependence of stretched exponent β . **c.** Temperature dependence of the initial asymmetry of stretched exponential term A_1 , KT term A_2 , background *B* and total asymmetry. **d.** Temperature dependence of relaxation rates of the stretched exponential term λ and KT term σ .

Discussion

- X-ray diffraction (XRD), magnetic susceptibility and specific heat measurements are consistent with the former study by Liu [2].
- > From μ SR results, we exclude the possibility of magnetic order.
- Spin-liquid-like state and spin-glass-like state coexist. The spin freezes below 6 K, but the dynamic spin persist down to 88 mK.
 The thermal conductivity experiment by B-L. Pan show that there is no nonzero residual linear term at 0 K, suggesting the frozen spin at low temperature.

Fig. 3. **Results of ZF-µSR**. **a.** Selected asymmetry spectra at different temperatures. The constant background has been subtracted for clearance. **b.** Temperature dependence of stretched exponent β . **c.** Temperature dependence of the initial asymmetry of stretched exponential term A_1 and KT term A_2 . **d.** Temperature dependence of relaxation rates of the stretched exponential term λ and KT term σ .

➢ It is possible that several regions of spin glass state in the system block the conductivity of heat.

Conclusions

- > No magnetic order in triangular lattice spin liquid candidate NaYbSe₂.
- Spin-liquid-like state and spin-glass-like state coexist.
- Spin dynamics persists down to 88 mK, but can be suppressed by a not very large field [6].
- ➢ Spin freezes below 6 K.
- > It could be a spin liquid system containing significant spin glass "impurities".

Acknowledgements

Supported by the National Key Research and Development Program of China Nos. 2016YFA0300503, and the National Natural Science Foundation of China Nos. 11774061.

References

- [1] J. A. M. Paddison, et al., Nat. Phys. 13, 117 (2017).
- [2] W. Liu, et al., Chinese Phys. Lett. 35, 117501 (2018).
- [3] L. Balents, Nature 464, 199 (2010).
- [4] µSR Brochure, J. W. Sonier.
- [5] R. S. Hayano, *et al.*, Phys. Rev. B **20**, 850 (1979).
- [6] Y. Li, et al., Phys. Rev. Lett. 117, 097201 (2016).

