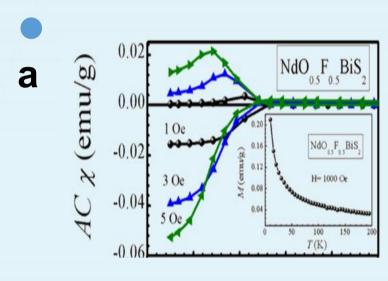
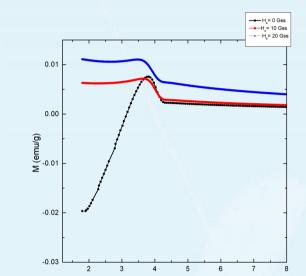
Coexistence of superconductivity and magnetism in $NdO_{0.5}F_{0.5}BiS_{2:}$ A muon spin relaxation/rotation study

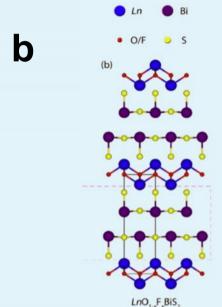
C. S. Chen ¹, J. Zhang¹, Z. F. Ding¹, O. O. Bernal², P.-C. Ho³, D. E. MacLaughlin⁴, C. Tan ¹, D. Yazici⁵, B. Maple⁵, L. Shu¹

¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China

²Department of Physics and Astronomy, California State University, Los Angeles, California 90032, USA

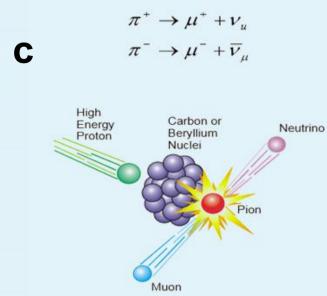

³Department of Physics, California State University, Fresno, California 93740, USA

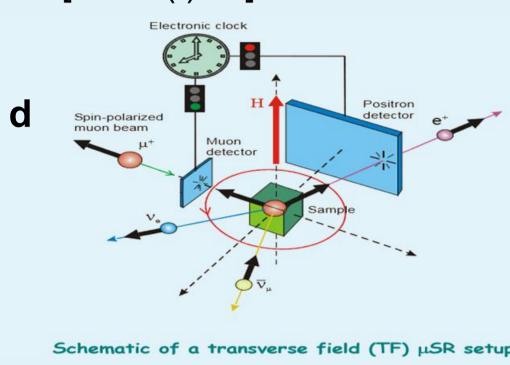

⁴Department of Physics and Astronomy, University of California, Riverside, California 92521, USA


⁵Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA

Motivation

- Traditionally, superconductivity and long–range magnetism had been considered mutually exclusive. In recent years, the relation between magnetism and superconductivity has aroused a lot of interest. Since it was reported there is a positive bulge of magnetic susceptibility around 4.9K in the FIG. a, which indicate there may be a relation between superconductivity and magnetism in this compound NdO_{0.5}F_{0.5}BiS2.
- The structure of BiS2 based layered compounds are similar to that of high Tc cuprates and Fe-pnictides. So it may help us understand the mechanism of superconductivity in high-Tc superconductors.
 ** **


- FIG. a.: Left figure: AC magnetic susceptibility plots for NdO_{0.5}F_{0.5}BiS₂ (quoted from:D. Yazici, et al. Physica C 514 (2015) 218–236)
- Right figure: DC magnetic susceptibility plots measured by our group.
- **FIG. b.**: Schematic unit cell of NdO_{0.5}F_{0.5}BiS₂ compound.(quoted fromD. Yazici, et al. Physica C 514 (2015) 218–236)

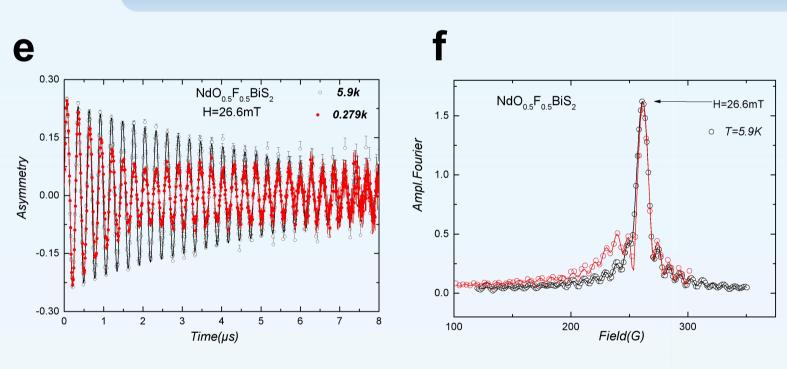

TF_μSR experiments

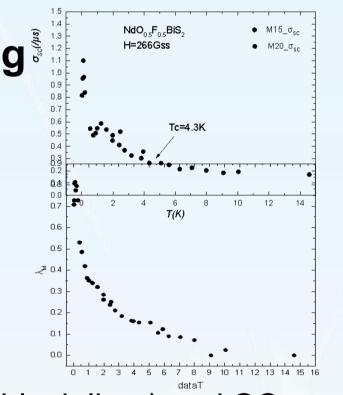
The number of decay positrons recorded per time bin in each counter could be given by:

$$N(t) = N0e^{-t/T\mu} [1+AP(t)+B]$$

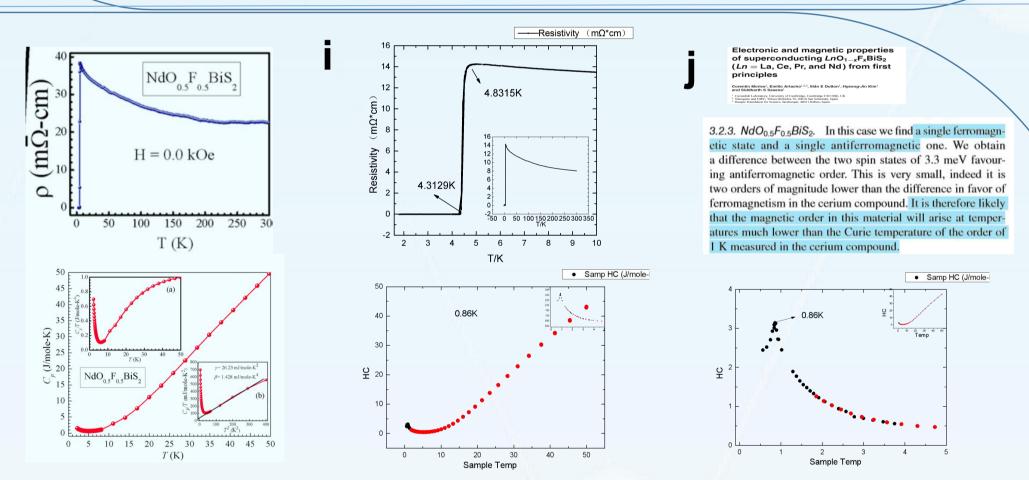
Muon Lifetime: $2.19714\mu s$

For a type-II superconductor with a *flux line lattice(FLL)*, the muon spin depolarization rate is shown below:


$$\sigma_{\rm sc} = \gamma_{\mu} \Delta B_{rms}$$


where $\Delta B_{\rm rms}$ is the rms width of the internal field distribution in the *FLL*. $\Delta B_{\rm rms}$ is approximately related to the penetration depth $\lambda_{\rm ab}$ by :

$$\Delta Brms = 0.172 \frac{\phi_0}{2\pi} (1-b) [1 + 1.21(1-\sqrt{b})^3] \lambda_{ab}^{-2}$$


Where $\phi_0 = 2.068 \times 10^{-15}$ Wb is the magnetic flux quantum and $b = B/B_{c2} \approx H_T/H_{c2}(T)$.

Result

- **FIG. e.**: Time evolution of symmetry at normal sate(black line) and SC sate(red line).
- FIG. f.: There is a field shift at around 244 mT which is induced by meissner effect.
- **FIG. g.**: The figure above shows the rate of gaussian term in the fitting formula, while the figure below shows the rate of exponential term.
- Fitting function $f^F(t) = A_1 e^{-\frac{1}{2}\sigma^2 t^2} e^{-(\lambda_M)t} \cos(\omega_1 + \varphi_1) + A_2 e^{-\lambda_{BG}t} \cos(\omega_2 + \varphi_2)$
- The two additive terms represent the superconducting part and the background part respectively. Parameter A₁, A₂ represents the initial asymmetry of each part. The gaussian term is induced by *FLL* (*flux line lattice*) and exponential term is generated by the magnetic part.
- The data in FIG.g shows an abnormally large jump at around
 1k, which may indicate there is something interesting at 1K.

- FIG. h.: The reported resistivity and specific heat properties cited from Rajveer Jha et al. JOURNAL OF APPLIED PHYSICS.
- FIG. i.: The resistivity and specific heat properties measured by our group.
- FIG. j.: First principles calculation suggest that ordered magnetism may appear at temperatures below 1k. And the figure below shows the data of heat capacity we measured below 1K.
- From the data above, our data fit well with others. And this is the first time that a possible magnetic phase transition has been observed at low temperatures (below 1K). We still need to do further measurements to make sure which phase transition it is.
- The DC data in **FIG.a** shows there is a positive bulge appeared with SC transition, which may indicate that there is competition for structural phase transitions

Conclusion

- The data showed perfect conductor properties and the meissner effect. Its transport properties agree well with others.
- This is the first time that a possible magnetic phase transition has been observed at low temperatures (below 1K). But we still need to do further measurements to make sure which phase transition it is.
- The DC data indicate that there may be a competition for structural phase transitions.

Acknowledgement

¹D. Yazici , et al. Physica C 514 (2015) 218–236

² Jian Zhang, et al. PHYSICAL REVIEW B 94, 224502 (2016)

³ C. Tan, et al. PHYSICAL REVIEW B 97, 174524 (2018)

⁴ Corentin Morice, et al. J. Phys.: Condens. Matter 28 345504

⁵ Rajveer Jha, et al. JOURNAL OF APPLIED PHYSICS 113, 056102 (2013)

