Coexistence of Ferromagnetic and Stripe Spin Fluctuations in YFe₂Ge₂

Hongliang Wo^{#1}, Qisi Wang^{#1}, Yao Shen^{#1}, Xiaowen Zhang¹, Yiqing Hao¹, Yu Feng¹, Shoudong Shen¹, Zheng He¹, Bingying Pan¹, Wenbin Wang², K. Nakajima³, S. Ohira-Kawamura³, P. Steffens⁴, M. Boehm⁴, K. Schmalzl⁵, T. R. Forrest⁶, M. Matsuda⁷, Y. Zhao^{8,9}, J. W. Lynn⁸, Zhiping Yin¹⁰, Jun Zhao^{*1,11}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China ² Institute of Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China ³Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195, Japan ⁴Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France ⁵Forschungszentrum Julich GmbH. Julich Centre for Neutron Science at ILL, 71 Avenue des Martyrs, 38000 Grenoble, France ⁶Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom ⁷Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393, USA ⁸NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA 9Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA ¹⁰Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China ¹¹Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China

Abstract The recently discovered iron-germanide superconductor YFe_2Ge_2 is of great interest because it is a possible new unconventional iron-based super-conductor other than iron pnictides/chalcogenides. Here we report neutron scattering measurement of single-crystalline YFe_2Ge_2 in the normal state, which has the same crystal structure to the 122 family of iron pnictide superconductors. Like the iron pnictides, YFe₂Ge₂ displays anisotropic stripe-type antiferromagnetic spin fluctuations at (π , 0, π). More interesting, however, is the observation of strong spin fluctuations at the in-plane ferromagnetic wave vector $(0, 0, \pi)$. These ferromagnetic spin fluctuations are isotropic in the (H, K) plane, whose intensity exceeds that of stripe spin fluctuations. Both the ferromagnetic and stripe spin fluctuations remain gapless down to the lowest energies measured. Our results naturally explain the absence of magnetic order in YFe₂Ge₂ and also imply that the ferromagnetic correlations may be a key ingredient for iron-based materials.

a, Schematic diagram of YFe₂Ge₂ crystal structure. **b**, Schematic representation of the stripe and ferromagnetic spin fluctuations in the (H, K, 0.5) plane (1-Fe unit cell). **c-f**, Background subtracted constant-energy images at indicated energies. Notably there is the coexistence of the anisotropic stripe and the isotropic inplane ferromagnetic spin fluctuations in YFe₂Ge₂.

Background subtracted constant-energy scans for (a-c) the stripe spin fluctuations along the H (transverse) direction, (d-f) the stripe spin fluctuations along the K (longitudinal) direction and (g-i) the in-plane ferromagnetic spin fluctuations along the (K, 1-K) direction. **j-k**, Constant-energy scans along the L direction for the stripe and the in-plane ferromagnetic spin fluctuations.

Background subtracted dispersion of the spin fluctuations projected on the K direction. The stripe spin fluctuations exhibit a steeper cone-like dispersion, while the splitting into two branches of the ferromagnetic ones can be clearly observed at higher energies. The open circles and the horizontal bars represents for the peak positions and the full-width at half maximum (FWHM) determined from the Gaussian fitting of the constant-energy scans. The vertical bars indicate the range of integrated energies.

References

Dynamic susceptibility and temperature dependence

proximity to ferromagnetic order and the competition between

stripe and ferromagnetic instabilities is evidenced.

