

Ferromagnetic Resonance Study on Two-dimensional van der Waals Crystals X. Shen, and Y. Z. Wu

Department of Physics, State Key Laboratory of Surface Physics, and Advanced Materials Laboratory, Fudan University, Shanghai, China

Introduction

Recent interests in two-dimensional ferromagnetic van der Waals Crystals are driven by their rich electronic and optical properties, further magnetic dynamic studies would provide deeper understanding on the magnetic properties of those materials. In this contribution, we report the results of ferromagnetic resonance of chromium trihalides in the temperature range of 10K-300K.

MOKE signal on atomically-thin Crl₃

Kerr rotation signal for bilayer Cr₂Ge₂Te₆

Magnetic anisotropy

The magnetic anisotropy field obtained from SQUID measurements consistents with our FMR studies.

-Crl

-CrBr

-CrCl

200

100

Temperature (K)

Experiment

Typical curves of ferromagnetic resonance

FMR linewidth

The magnetic anisotropy field can be fitted from ω -H dispersion.

Microwave absorption Vs Susceptibility

Summary

> Strong FMR signal is measured for all these chromium trihalides, the resonance field varies with the temperature.

plane magnetic anisotropy field.

\succ The magnetic susceptibility is proportional to the power absorbed in magnetic resonance.