Unusual slow magnetic fluctuations in $Sr_2Ir_{1-x}Rh_xO_4$ studied by muon spin relaxation (µSR)

C. Tan¹, Z. F. Ding¹, J. Zhang¹, Z. H. Zhu¹ D. E. Maclaughlin², O. O. Bernal³, P. C. Ho⁴, and L. Shu¹

¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
²Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
³Department of Physics and Astronomy, California State University, Los Angeles, California 90032, USA
⁴Department of Physics, California State University, Fresno, California 93740, USA

Redfield Relation: The function to describe field dependence of relaxation rate

$$\lambda_{LF}^{(1)} = \frac{2(\gamma_{\mu}B_{loc}^{(1)})^{2}\tau_{c}^{(1)}}{1+(\tau_{c}^{(1)}\gamma_{\mu}H_{L})^{2}}, \ \lambda_{LF}^{(2)} = \frac{2(\gamma_{\mu}B_{loc}^{(2)})^{2}\tau_{c}^{(2)}}{1+(\tau_{c}^{(2)}\gamma_{\mu}H_{L})^{2}}$$

 $\lambda_{ZF/LF} = \lambda_{LF}^{(1)} + \lambda_{LF}^{(2)}$, $\lambda_{LF}^{(1)}$ represents the field dependence of λ_{LF} at low fields, corresponding to **nuclear dipolar field**; $\lambda_{LF}^{(2)}$ represents the high field part, corresponding to the **hidden magnetic order**.

$\lambda_{LF}(H_L)$ at different temperatures B_{loc} and τ_c versus T

Preliminary conclusions

- The temperature of maxima in $\lambda_{ZF}(T)$ are consistent with its measured by symmetry breaking probe.
- Our LF results indicate that there are two different magnetic fluctuations with different fluctuating rate in Sr₂Ir_{0.9}Rh_{0.1}O₄.

• The maxima we observed in ZF is caused by faster magnetic

