Efficient manipulating on circularly polarized THz waves with transmissive metasurfaces

Min Jia¹, Zhuo Wang¹, Heting Li², Xinke Wang², Weijie Luo¹, Shulin Sun¹, Yan Zhang², Qiong He¹ and Lei Zhou^{1,*} ¹Department of Physics, Fudan University, Shanghai, 200433, China

²Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing

Advanced Innovation Center for Imaging Technology,, Capital Normal University, Beijing, 100048, China

Corresponding Author: <u>*phzhou@fudan.edu.cn*</u>

- Efficient manipulation on circularly polarized (CP) THz waves is highly desired for versatile applications: biological and medical sensing, nondestructive evaluations, etc.
- Convectional THz devices suffer from bulk size, narrow-band of operating frequencies and loss efficiency issues .

• Motivations:

• Efficient generation of CP THz waves based on Pancharatnam-Berry (PB) metasurfaces.

• Realization of Background-free CP Bessel Beam with efficient PB Metasurfaces for study of molecule chirality.

• Design principle of PB meta-atom

Condition of efficiency transmissive PSHE: $|r_{xx}| = |r_{yy}| = 0, |t_{xx}| = |t_{yy}| = 1, \arg(t_{xx}) - \arg(t_{yy}) = \pi$

- Fig. Field distribution at f=0.66 THz and 0.89 THz, and efficiency of PSHE
- PSHE is clearly observed at frequency within the working band.
- Relative working efficiency of PSHE can reach 90% at 0.66 THz.
- Working bandwidth 0.59-0.72THz

Background-free CP Bessel beam

$\varphi(x, y) = k_0 \sqrt{x^2 + y^2} \sin(\theta)$

Fig. Optical image of part of Bessel beam generator and phase diagram. FDTD simulated $Re(E^-)$ and $Re(E^+)$.

- ABA trilayer structure
- Phase difference between two orthogonally polarized wave due to different transparency mechanism
- Characterization of PB meta-atom

• Transmissive half waveplate achieved with thickness of $\lambda/5$

Fig. Intensity distribution on xz and xy plane.

- LCP field distribution does not exhibit any features of a BB performance
- Good agreement between Experiments and FDTD simulations
 Bessel beam performance well demonstrated at 0.66THz

• Conclusions:

- Experimental Demonstration of efficient PSHE to generate CP THz wave with efficiency of 90%
- Experimental Demonstration of Background-free THz CP Bessel Beam generator based on PB metasurface
- Our findings can stimulate the realizations of highperformance PB metadevices in THz regime for diversified promising applications.

References:

1. Luo W, Sun S, Xu H X, et al. *Phys. Rev. Appl.* 2017, 7, 044033.

2. Luo W, Xiao S, He Q, et al. Adv. Opt. Mater. 2015, 3, 1102-1108.

3. Wang X, Cui Y, Sun W, et al. J. Opt. Soc. Am. A. 2010, 27, 2387–2393.

4. Jia M, Wang Z, Li H, et al. *Light: Science & Appl.* 2019, 8 : 16.