Controlling Angular Dispersions in Metasurfaces: Physics and Applications

Xiyue Zhang^{1#}, Qi Li^{1#}, Feifei Liu^{1#}, Meng Qiu¹, Min Jia¹, Shaojie Ma¹, Shulin Sun², Qiong He^{1*} and Lei Zhou^{1*} 1. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 2. Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photonics and Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China

[#] Presentation Author: <u>zhangxy17@fudan.edu.cn</u>, * Supervisors :<u>phzhou@fudan.edu.cn</u>, <u>gionghe@fudan.edu.cn</u>

Backgrounds Angular Dispersions [2] **Frequency dispersion**^[1] (e) TE ($\alpha = 90^{\circ}$) TM ($\alpha = 0^{\circ}$) Frequency (THz) ★ f from Expt. * * * * * At no O 20 40 600 θ (deg) θ (deg) • Intrinsic physics of angular dispersions in metasurfaces remains unclear; • Angular dispersions were rarely employed in the design of metasurface.

III Control Q factor with angular dispersions

• Understand physical origin of angular dispersion in Metasurfaces

♦ Motivations

Use angular dispersions as a new degree of freedom to design meta-devices with angular dependent or independent performances

I Angular dispersions in Metasurfaces

Fig3. Angle selective perfect absorber

Perfect absorption: $\Gamma_i = \Gamma_e$ ^[3]

TE

IV Applications: Angle-dependent Polarizer

TM

Fig1. Strongly angular dispersive perfect absorber

Resonance frequency: $f(\theta) = f_0 + J_0 + J_1 \cos(Pk_0 \sin\theta) + J_2 \cos(2Pk_0 \sin\theta) + \dots$

II Control resonant frequency with angular dispersions

Fig2. Incident-Angle-independent perfect absorber **Nearest- neighbor intrarow couplings:** $J_1 = 2 \sum_{i=-n} t_{\{0,0\}}^{\{i,1\}}$ **Inter-atom coupling:** $t_{\{m,n\}}^{\{k,l\}} = -f_0 \frac{\int \vec{P}_{\{m,n\}}^*(\vec{r}) \cdot \vec{E}_{\{k,l\}}(\vec{r}) d\tau}{\sqrt{d} \sqrt{d}}$

Fig4. Incident-Angle dependent polarization control in NIR regime

Conclusions:

- 1 Control resonant frequency and line shape with Angular dispersions
 - **Experimental demonstration of NIR Angle-dependent Polarizer**
- 2 Employ angular dispersions as a new degree of freedom to
- design incident-angle-dependent multifunctional meta-devices

References:

3

[1] Chen WT, Zhu AY, et al. Nat Nanotechnoly. 2018 [2] Meng Qiu, et al. Phys. Rev. Applied 2018 [3] Qu C, Ma S, et al. PhysRevLett. 2015 [4] Xiyue Zhang, Qi Li, Feifei Liu et al. To be submitted.

90