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Introduction

 Scanning Microwave Impedance Microscopy (sMIM)
• AFM-based near field scanning probe working at microwave frequency

• Probe the local conductivity/dielectric variation through AC microwave 

impedance measurement

• High spatial resolution (~50 nm) with subsurface sensing capability 
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The metal-insulator  transition of V2O3 
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magnetic structure of V2O3
[2]
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Macroscopic resistivity measurement 
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Nanoscale phase separation in V2O3 
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The measured sMIM signal level shows a continuous change with a thermal 
hysteresis consistent with the macroscopic resistivity measurement

1. The MIT in V2O3 was probed microscopically with sMIM displaying a bi-directional striped

pattern of phase separation at micrometer scale.

2. The measured sMIM signal level shows a continuous change with temperature including the

thermal hysteresis, facilitating a direct comparison with macroscopic resistivity measurement.

3. Potential research application of sMIM to system with contrasting spatial conductivity, such as

domain/domain walls in multiferroics and topological edge states in topological phases.
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sMIM response curve [1]

Block diagram of sMIM [1]

V2O3 on Al2O3

Phase diagram of V2O3
[2]

• Canonical system with metal- insulator 

transition (MIT)

• 1st order MIT accompanied by a 

structural transition

• MIT mechanism: the structure driven 

Peierls transition? or Mott transition?
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Temperature-dependent co-localized sMIM images (normalized) of 
nanoscale phase separation in V2O3 show bi-directional striped pattern

Nearly identical configuration of phase separation during (a) cooling and 
(b) warming indicates a strong phase pinning effect by substrate [3]
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Imaging the nanoscale phase separation in V2O3 with scanning 
microwave impedance microscopy
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