

## **ANNUAL ACADEMIC CONFERENCE 2021**

# Direct visualization of edge state in even-layer MnBi<sub>2</sub>Te<sub>4</sub> at zero magnetic field

Weiyan Lin<sup>1</sup>\*, Yang Feng<sup>2</sup>\*, Yongchao Wang<sup>3</sup>\*, Zichen Lian<sup>3</sup>, Hao Li<sup>4</sup>, Yang Wu<sup>4</sup>, Chang Liu<sup>3</sup>, Yihua Wang<sup>2</sup>, Jinsong Zhang<sup>3</sup>, Yayu Wang<sup>3</sup>, Xiaodong Zhou<sup>1†</sup> and Jian Shen<sup>1,2†</sup>
<sup>1</sup>Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.
<sup>2</sup>State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
<sup>3</sup>State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China.
<sup>4</sup>Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing, China.

## Technique and material

#### Scanning Microwave Impedance Microscopy (sMIM)





#### sMIM response curve

- > AFM-based near field scanning probe
  - Probe the local conductivity/dielectric variation
  - Non-contact and high spatial resolution  $\sim 50 \text{ nm}$
- Suitable for study of topological materials (bulk vs. edge)

#### **Antiferromagnetic topological insulator (AFM-TI): MnBi<sub>2</sub>Te<sub>4</sub>**



MnBi<sub>2</sub>Te<sub>4</sub> with AFM order



- Intricate interplay between magnetism and topological order
- Even-layer MnBi<sub>2</sub>Te<sub>4</sub> flakes
  - Chern insulator/Axion insulator at high (zero) fields



- V<sub>g</sub> (V)
- Direct visualization of topological edge state in Chern insulator phase at high fields
- > Another edge state uncovered at zero magnetic field

#### Magnetic field dependent sMIM imaging



- > Direct visualization of insulator-to-metal transition (IMT) for the bulk
- > Persistent edge state upon the transition

Gate (V)



- Transport study reveals Axion to Chern insulator transition in 6-SL MnBi<sub>2</sub>Te<sub>4</sub>
- SMIM reveals the absence (existence) of edge states in Axion (Chern) insulator state in Cr-doped (Bi,Sb)₂Te₃

#### Physical origin of edge state at zero field



- Surface hall current underlying half-quantized surface Hall effect in three-dimensional TI
- > Time reversal symmetry broken quantum spin Hall state

## Conclusions

An magnetic field driven Axion to Chern insulator transition was directly visualized with a bulk IMT
 A persistent edge state was revealed from Chern to Axion insulator phase calling for new understandings

## References

[1] C. Liu, *et al.* "Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator" *Nature Materials* **19**, 522 (2020)

