Tunable Terahertz Plasmons in Graphite Thin Films

Qiaoxia Xing^{1,2}, Chaoyu Song^{1,2}, Chong Wang^{1,2}, Yuangang Xie^{1,2}, Shenyang Huang^{1,2}, Fanjie Wang^{1,2}, Yuchen Lei^{1,2}, Xiang Yuan^{1,6}, Cheng Zhang^{1,3}, Lei Mu^{1,2}, Yuan Huang⁵, Faxian Xiu^{1,3,4} and Hugen Yan^{1,2*}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.

²Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.

³Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.

⁴Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

⁵Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

⁶State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.

Introduction

Graphene plasmons

- good gate tunability
- With relatively weak response to light, graphene has to be combined with metallic structures to realized feasible modulation.

Graphite plasmons

- ◆ The thermal carrier density in graphite depends strongly on temperature, which promises sensitive tuning of plasmons by temperature.
- Graphite is a semimetal where massive electrons and massless Dirac holes coexist, residing around K-point and H-point of the Brillouin zone, respectively, and forming a two-component plasma.

Temperature-dependent infrared absorption of graphite thin films

Temperature- and bias-tunable plasmons in graphite thin films

• Graphite plasmon manifests pronounced temperature and bias voltage dependence, which is in sharp contrast to the plasmon in graphene.

Magnetoplasmon

- The plasmon dispersion follows the standard $\omega_p \propto \sqrt{q}$ scaling law.
- The plasmon broadening and intensity reduction are compelling evidences of the increasing Landau damping.

Temperature tunable graphite split rings

- The Drude weights of electrons and holes in graphite are comparable
- $\omega^{\pm} = \sqrt{\omega_0^2 + \left(\frac{\omega_c}{2}\right)^2 \pm \frac{\omega_c}{2}}$

A. Grüneis, C. Attaccalite, L. Wirtz, H. Shiozawa, R. Saito, T. Pichler and A. Rubio, Phys. Rev. B 78, 205425 (2008).