

Giant isotropic magneto-thermal conductivity of metallic spin liquid candidate Pr₂Ir₂O₇ with quantum criticality

J. M. Ni,¹ Y. Y. Huang,¹ E. J. Cheng,¹ Y. J. Yu,¹ B. L. Pan,¹ Q. Li,¹ L. M. Xu,² Z. M. Tian,^{2;†} and S. Y. Li^{1;3;*}

¹ State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China ² School of Physics, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China ³ Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

Verification of Wiedemann-Franz law

- Excluding the breakdown of electrons
- Incompatible with the Kondo breakdown QCP formalism
- Absence of fermionic magnetic excitations
- No positive contribution to κ from bosonic magnetic excitations

- $T > \theta_w$, the Kondo effect starts to lead to the screening of the 4*f* moments

Conclusions

>The Wiedemann-Franz law is verified at high fields and inferred at zero field, suggesting the normal behavior of electrons at the zero-field QCP and the absence of mobile fermionic magnetic excitations. This result puts strong constraints on the description of the quantum criticality in Pr₂Ir₂O₇.

\geq Neither positive nor negative contributions to k from bosonic magnetic excitations are found.

>A giant isotropic magneto-thermal conductivity is found at finite temperatures, indicating that the quadrupolar interactions and quantum fluctuations may play important roles.

