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So far, the Yb-laser-based HHG sources are mostly optimized in the low-energy range (15 - 40 eV), which is fundamentally limited by their long pulse durations. In this work, we generate and optimize a >100

eV HHG source driven by a compressed Yb laser through two efforts: First, we demonstrate the flexible and efficient all-solid-state pulse compression of an Yb femtosecond laser to few cycles (~9 fs), which is

enabled by the nonlinear propagation of solitary modes in periodic layers of Kerr media (PLKM). Second, we explore the generation of high-brightness >100 eV HHG in argon driven by the few-cycle pulses from

the compressed Yb laser. We clearly show that the nonadiabatic effects dominate the HHG emission in argon beyond 100 eV, which is manifested as a significantly broad spectral extension beyond the cut-off

energy. Remarkably, such an energy extension can be comparable to the cut-off energy. In contrast, driving HHG in argon with an Yb laser in the adiabatic region cannot reach the energy of 100 eV.

1. Introduction

ⅰ. High-efficiency pulse compression enabled by PLKM

ⅲ. Nonadiabatic HHG > 100eV driven by a compressed Pulse

3. Simulations

Nonadiabatic high-harmonic generation >100 eV enabled by few-
cycle all-solid-state compression of an Yb femtosecond laser

Universal relationship of the normalized beam

radius squared as a function of the nonlinear

phase b for the resonator solitary modes. ⅱ. Generation of high-quality few-cycle pulses

4. Conclusion

⚫ Solitary state corresponds to the minimum of the far-field beam radius approaching from the long-

L side.

⚫ Shorter L condition has broader spectrum, but spatial chirp and conical emission is significant,

which is manifested by the strong rings.

⚫ Solitary state of the PLKM resulting in SCG with high efficiency and high spatiotemporal quality.

⚫ The flexibility of our approach is demonstrated by compressing pulses under a wide range of

pulse energies and repetition rates.

a) Spectral bandwidth and far-field

beam radius;

b) Measured on-axial spectra;

c) Far-field spatial mode of the

output beam;

d) Temporal profiles of the

compressed pulses.

a) Measured, reconstructed spectra

and the retrieved phase;

b) The temporal profile of the few-

cycle pulses;

c) Measured and reconstructed

FROG traces;

d) The temporal profiles under

different resonator lengths L.

e) The HHG spectra excited by the

pulses of (d).

⚫ The measurement and reconstruction results have very good agreement.

⚫ The 9fs pulse has only three cycles.

⚫ The optimum condition is L=9.5 cm. This result demonstrates that the “resonant” condition can

indeed yield optimum compression to the few-cycle pulses in both space and time.

a-c) HHG spectra driven by

different condition. The

triangle symbols label the

cut-off energies (Ec);

d) Long-term stability;

e) The cut-off energies (Ec)

driven under different

conditions in comparison

with different models.

⚫ As the pulse length shortens, the effective harmonic energy increases significantly, and the

increase is much greater than the increase in cutoff energy (the maximum spectral intensity

energy).

⚫ Phase match cutoff has a quantitative agreement with Ec under a wide range of the pulse durations,

but this adiabatic model cannot explain the broad spectral extension.

⚫ Such a good stability benefits from our stable and efficient pulse compression scheme.

a) Simulation results of HHG spectra

driven by different condition;

⚫ The high-energy spectral tail ΔEc originates from the sub-cycle generation of free electrons and the

resulting variations of the laser electric field.

⚫ HHG emission beyond Ec is mostly contributed by the pulse peak when the driving intensity is low,

while it is shifted by more than 1 optical cycle to the rising edge under a strong driving field.

⚫ Such an effect is averaged out when more optical cycles contribute to the HHG emission in longer

pulses.

2. Main Results

b,c) The time-frequency analysis of the

HHG spectrum driven by τ = 9 fs

pulse;

d) Evolution of the gas ionization driven

by τ = 9 fs, IL = 700 TW cm-2 for

different propagation distance in

argon.

e) The laser electric field at different

distances corresponding to (d).

⚫ We demonstrate the flexible and efficient all-solid-state pulse compression of an Yb femtosecond

laser to few cycles (~9 fs), which is enabled by the nonlinear propagation of solitary modes in

periodic layers of Kerr media (PLKM).

⚫ We explore the generation of high-brightness >100 eV HHG in argon driven by the few-cycle

pulses from the compressed Yb laser.

⚫ Through the quantitative comparison between the experimental and theoretical results, we clearly

show that the nonadiabatic effects dominate the HHG emission in argon beyond 100 eV, which is

manifested as a significantly broad spectral extension beyond the cut-off energy.
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