Efficient generation of complex vectorial optical fields with metasurfaces

<u>Dongyi Wang¹</u>, Tong Liu¹, Feifei Liu¹, Shulin Sun², Qiong He¹, Lei Zhou^{1,*}

¹State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai 200433, China

²Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photonics and Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China

Author: <u>dywang17@fudan.edu.cn</u> Supervisor: <u>phzhou@fudan.edu.cn</u>

Fig. 1 Previous metasurfaces using either (a) $\Phi(\vec{r})$ (Wave-front) or (b) $\Delta \Phi$ (Spin/polarization) and (c) real **VOF** with both complex wavefront & spin distribution

ΔΦ=Φ ... – Φ

Motivations $\overline{}$

- 1. Propose a general platform to generate complex VOF with both *arbitrary wave-front* & polarization distribution
- 2. Use the meta-platform to explore new physics and realize more fancy functionalities : Far-field VOF, Near-field VOF, Bifunctional VOF etc.

IV. Far-field VOF Generator

Fig. 7 A far-field vortex beam with varying ellipticity

- $\Phi_{\rm tar}(\vec{r}) = \varphi + \frac{\pi}{4}$: Uniform beam \rightarrow *l*=1 vortex
- : Homogeneous $LP \rightarrow Varied$ ellipticity $\Theta_{\text{tar}}(\vec{r}) = \pi - 2\varphi$
- : Homogeneous LP \rightarrow Varied orientation $\Psi_{tar}(\vec{r}) = 2\varphi - \frac{\pi}{2}$

V. Near-field VOF Generator

(b)

II. Basic idea & Theoretical analysis

Fig. 2 Schematic of generating arbitrary VOFs with metasurfaces

Fig. 3 DMT model calculation

 $L_{v} \Leftrightarrow \Delta \Phi \Leftrightarrow \Theta_{tar}$

• Key Points

A set of meta-atoms, each of which can:

1. Convert the local spin-state of incident light to an arbitrary state $(\Theta_{tar}(\vec{r}), \Psi_{tar}(\vec{r}))$

2. Possess any required extra phases $\Phi_{tar}(\vec{r})$

• **Dipole-Model Calculations**

Treat each meta-atom as a pair of dipoles and calculate : Radiative pattern seen as a **Diverging Vector Vortex beam**

 $\rightarrow \{\Theta_{tar}, \Psi_{tar}, \Phi_{tar}\} \iff \text{Desired VOF}$

III.Meta atom design strategy & Benchmark Cases

(c)

Fig. 8 A vectorial vortex surface plasmon coupler

• $\Phi_{tar}(\vec{r}) = \zeta_r r + \varphi, \quad \zeta_r > k_0$

(a)

- $\Phi_{tar}(\vec{r}) = \zeta_r r + \varphi, \quad \xi_{\varphi} = 1$
- : Uniform beam \rightarrow *l*=1 vortex

: **Propagating wave** \rightarrow **Radial SPP**

$$\Theta_{\text{tar}}(\vec{r}) = \frac{\pi}{2}, \Psi_{\text{tar}}(\vec{r}) = 2\varphi$$

: Homogeneous LCP \rightarrow LP along *r* direction

(d)

Experimentally efficiency $: 34 \pm 6\%$

VI. Bi-functional VOF Generator

Fig. 4 Meta-atom design: MIM tri-layer meta-atom for reflection geometry

• **Design Strategy**

- Three geomatrical degrees of freedom (L_u, L_v, ξ) \rightarrow considerably large variation range $(\Phi_{res}, \Delta \Phi, \xi)$
- \rightarrow unprecedented ability to freely manipulate ($\Phi_{tar}, \Theta_{tar}, \Psi_{tar}$)

i.e. arbitrary local spin state and initial phase for each meta-atom

Fig. 5 Meta-atoms functioning as different wave plates

- **Benchmark cases** \mathbf{O}
- 1. Designed meta-atoms functioning as different wave plates & processing different phases
- 2. Anomalous-reflection half-wave plate:

$\left\{ \Phi_{\text{ini}}(r), \Theta(r), \Psi(r) \right\}$	
Fig. 9 A Bi-functional VOF generator	
$\Phi_{\rm tar}^{\sigma} = \Phi_{\rm res} + \sigma \cdot \Phi$	Spin –independent Resonance PhasegeoSpin–dependent Geometric Phase
$\int \Phi_{ini}^+(\vec{r}) = 3\varphi : \text{Uniform} \rightarrow l = +3 \text{ vortex}$	$\Phi_{\text{ini}}^{-}(\vec{r}) = -\varphi - \frac{\pi}{2}: \text{Uniform} \to l = -1 \text{ vortex}$
$\begin{cases} \Theta^+(\vec{r}) = \frac{\pi}{2} & : \text{LCP} \to \text{LP} \end{cases}$	$\Theta^{-}(\vec{r}) = \frac{\pi}{2}$:RCP \rightarrow LP
$\left(\Psi^+(\vec{r}) = 4\varphi : \text{LCP} \rightarrow \text{Varied orientation}\right)$	on $\Psi^{-}(\vec{r}) = 4\varphi + \pi$:RCP \rightarrow Varied orientation
LCP Incidence	RCP Incidence

VII. Conclusions & Perspectives

- 1. A general meta-platform is proposed for arbitrary VOF with desired wave front and inhomogeneous local spin state.
- 2. Both far-field and near-field VOF generators are designed and characterized to demonstrate the concept.
- 3. **Bi-functional VOF generators** are also designed and characterized based on two different mechanisms induced phases.
- 4. Even more fancy physics and functionalities to be explored based on this platform...

References

[1] Dongyi Wang et al. Light: Science & Applications 10, 67 (2021)

Linear initial phase distribution \rightarrow Anomalous reflection

Each meta-atom as HWP \rightarrow **Desired uniform polarization conversion**

[2] Dongyi Wang et al. Nanophotonics 10(1), 685–695 (2021)

[3] Jiaming Hao, et. al. PRL. 99, 063908 (2007)

[4] Nanfang Yu et al. Science. 334, 333 (2011)

