

Magnetic dynamical coupling in kagome artificial spin ice

Xi Shen¹, Dong Shi², Hong Xia¹, Jia Xu¹, Fanlong Zeng¹, Haoran Chen¹ and Yizheng Wu^{1*}

¹ Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China ² School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China

Schematic of sample and measurement

CPW with ASI pattern sample ' sample 2

Mumax simulation

FMR f-H spectra

Simulated resonance modes

⁵ f (GHz)

0

10

f =9.0 GHz bulk mode in adjacent strips.

f =11.1 GHz bulk mode in adjacent strips.

0

-π

Phase

Magnetization switching caused changes are observed.

Simulated magnetic dynamical coupling

Summary

> The kagome-type ASI lattices were prepared and the related magnetic dynamical properties were studied using the broadband FMR technique and

\succ By changing the in-plane magnetic field angle θ_{H} , magnetic dynamical coupling in kagome ASI lattice were observed and analyzed.