Cuprate superconductivity in the extreme 2D limit

<u>Hengsheng Luo</u>^{1,2}, Liguo Ma^{1,2}, Dongjoon Song³, Yijun Yu^{1,2}, Peng Cai^{1,2}, Ruidan Zhong⁴,

Jian Shen^{1,2}, Genda Gu⁴, Hiroshi Eisaki³, Xian Hui Chen^{5,6}, Wei Ruan^{1,2}, Yuanbo Zhang^{1,2*}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China

²Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973, USA

³Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China ⁴National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan

Introduction

Why we study monolayer Bi2201

- Simple system for studying high-temperature superconductivity without intralayer coupling
- Tunable system for exploring the complicated phase diagram Atomic structure Phase diagram

Large-range and reversible tunability

Fabrication method

Intrinsic monolayer Bi2201 was obtained

- Hydrogen bond assisted exfoliation at cryogenic temperature
- Cold-welding electrode fabrication
 - Optical image of 1 L Bi2201 device

STM topography of 1 L Bi2201

- Carrier density $\sim 10^{14}$ cm⁻²
- Dope electrons/holes through annealing in vacuum/ozone
- Reversible tunning

Anomalous metal phase in 1 L Bi2201

Anomalous metal is one of the ground-state of 2D cuprate superconductors

Decreased T_c in 1 L Bi2201 R-T comparison $T_{\rm c}$ comparison -1L 00 -4L - Bulk 0.4 34 R/R (100 K) $_{\text{diff}}(K)$ ٣ 32 0.2 30

30 40 3 50 2 *T* (K) Number of layers

Possible reason of T_c decrease

0.0

20

- Oxygen dopants loss during device fabrication \times
- Sample degradation during device fabrication \times
- Disorder increase during doping tunning process \times

Enhanced vortex motion in 1 L Bi2201

- Energy barrier of vortex motion in 1 L Bi2201 is lower
- Enhanced vortex motion leads to stronger dissipation

Summary

Bulk

Δ

- 1 L Bi2201 is a highly tunable 2D superconductor.
- Optimal T_c in 1 L Bi2201 is ten percent lower than that of bulk.
- Vortex motion is enhanced in 1 L Bi2201.

Anomalous metal is the intermediate phase in the superconductor-insulator

