Stripe order and spin dynamics in triangular-lattice antiferromagnet KErSe₂: A single-crystal study with a theoretical description

Gaofeng Ding,^{1,2,‡} Hongliang Wo,^{1,2,‡} Rui Leonard Luo,^{3,‡} Yimeng Gu,^{1,2} Yiqing Gu,^{1,2} Robert Bewley,⁴ Gang Chen^{3,*} Jun Zhao^{1,2,5,6,†}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China ²Shanghai Qi Zhi Institute, Shanghai 200232, China ³Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China ⁴ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom ⁵Institute of Nanoelectronics and Quantum Computing, Fudan University, Shanghai 200433, China ⁶Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

The rare-earth triangular-lattice chalcogenide is a great platform for exploring both spin liquids and novel magnetic orders with anisotropic spin Abstract interactions and magnetic frustrations. Here, we report the thermodynamic and neutron scattering measurements of rare-earth triangular-lattice chalcogenide KErSe₂, using single-crystal samples. Our experiments revealed a long-range stripe order below 0.2 K. Although the magnetic order was threedimensional, magnetic excitations exhibited negligible modulation along the z direction, indicating very weak interlayer coupling. Furthermore, magnetic excitation developed a well-defined spin-wave dispersion with a gap of ~0.03 meV at M points. Both the stripe order and spin-wave excitations could be quantitatively understood from the anisotropic spin interactions of the Er³⁺ Kramers doublets. Our results therefore established the important role of the anisotropic spin interaction for the novel magnetic order and excitations in this system.

a, Schematic diagram of KErSe₂ crystal structure. **b**, Temperature dependence of heat capacity measured under a zero field. c, DC magnetic susceptibility under zero-fieldcooling (ZFC) and field-cooling (FC) on KErSe₂ single crystal. The inset shows the Curie–Weiss fit of inversed magnetic susceptibility below 10 K. d, Isothermal magnetization for H // c and $H \perp c$ at T = 1.8 K.

a,b, (H, K, 0.5) contour plots with energy transfer E = 0.2 and 0.3 meV measured at 20 mK. c,d, Corresponding calculated spin excitations using anisotropic Heisenberg model with nearestneighbor exchange interactions. A representative set of exchange parameters with $J_{zz} = 0.06$ meV, $J_{+} = 0.01$ meV, $J_{++} = -0.04$ meV and $J_{z+} = 0.06$ meV.

a, Sketch of the reciprocal lattice of KErSe₂. **b**, The elastic neutron scattering signals in the (H, K, 0.5) plane at 20 mK. c, L-cuts for the magnetic Bragg peaks at the indicated temperatures. The solid lines are the fitting results of the Gaussian profile. The weak peak at L = -0.5 originates from the misalignment of minor single crystals. **d**, Magnetic structure of KErSe₂ with k = (1/2, 0, 1/2). Only half of the doubled magnetic unit cell along the c-axis is shown for clarity.

The measured and calculated spin-wave dispersions at 20 mK

For detailed information, please refer to Gaofeng Ding et al.,

