

Extension of the bright high-harmonic photon energy range via nonadiabatic critical phase matching

Zongyuan Fu,^{1,2†} Yudong Chen,^{1,2†} Sainan Peng,^{1,2} Bingbing Zhu,^{1,2} Baochang Li,³ Rodrigo Martín-Hernández,⁴ Guangyu Fan,⁵ Yihua Wang,¹ Carlos Hernández-García,⁴ Cheng Jin,^{3*} Margaret Murnane,⁶ Henry Kapteyn,⁶ Zhensheng Tao^{1,2*}

¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200438, China.
 ²Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China.
 ³Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
 ⁴Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, Universidad de Salamanca, E- 37008, Salamanca, Spain
 ⁵The Hamburg Centre for Ultrafast Imaging CUI, Universität Hamburg, 149 Luruper Chaussee, 22761 Hamburg, Germany.
 ⁶Department of Physics and JILA, University of Colorado and NIST, Boulder, CO 80309, USA.

+ These authors contributed equally to this work.
Corresponding authors:
Dr. Cheng Jin, cjin@njust.edu.cn;
Dr. Zhensheng Tao, ZhenshengTao@fudan.edu.cn.

1. Introduction

Extending the photon energy range of bright HHG to cover the entire soft X-ray region is important for many applications in science and technology. In this work, we reveal a second, nonadiabatic critical ionization fraction that can substantially extend the maximum phase-matched high-harmonic photon energy, arising due to strong reshaping of the intense driving laser field in a gas plasma. We also present an analytical model that predicts the spectral extension that can be achieved for different driving lasers. These findings are important for the development of high-brightness soft X-ray sources for applications in spectroscopy and imaging.

Influence of nonadiabatic effects on harmonic spectrum

- (A) Plasma induced laser intensity decay, temporal pulse reshaping affecting the electron trajectories and phase matching.
- (B) Illustration of that nonadiabatic critical ionization fraction can substantially extend the maximum phase-matched HHG photon energy.

2. Results

Harmonic spectrum roll-offs under different driving conditions

- (A)-(B) The temporal field reshape obtained from the numerical simulations at the entrance and the exit of a gas cell under laser intensity of I_{L} =200 TW cm-2 and I_{L} =700 TW cm-2.
- (C)-(D) The time-frequency analysis of HHG generated under the same conditions in (A) and (B).
- (E)-(F) The experimental and simulation HHG spectrum in argon driven by different laser intensity.

Extension to mid-infrared few-cycle lasers

- (A)-(C) The HHG spectrum driven by pulse durations of τ=9 fs, 22 fs and 170 fs, respectively, under different laser intensities (*I*_L).
- (D)-(F) The results of numerical simulations under similar conditions as in (A)-(C).
- As shown in Fig. A, ΔE can be as large as ~50 eV, which is comparable to the corresponding EPMC (~75 eV), delivering a great amount of usable highenergy XUV photons beyond the PMC.

The NCIF model

The wavevector mismatch for HHG:

$$\Delta k_q = \Delta k_g + \Delta k_n + \Delta k_p + \Delta k_d.$$

A critical ionization fraction including the nonadiabatic effects can be derived:

- (A) The NCIF model results under different wavelengths (λL) in argon, neon and helium. The symbols represent the results obtained from the numerical simulations.
- (E) A typical numerical spectrum of HHG in neon. The EPMC and E1% are labeled. The gas pressure is 100 torr, cell length is 1.5 mm and the driving intensity is 1000 TW cm-2.

3. Conclusion

• We develop a NICF model taking the nonadiabatic effects on the HHG phase matching into account. The model can precisely predict the reshaping and extension of a harmonic spectrum. Our results have potential for great impact and widespread use considering the recent great advances in high-energy few-cycle mid-infrared lasers as the driving sources of HHG.

Acknowledgement: We gratefully acknowledge the financial support from the

National Natural Science Foundation of China (Grant No. 11874121) and the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 19JC1410900).