Dispersive crystal electric field excitations in rare-earth magnet NaTmTe₂

Shiyi Zheng¹, Qisi Wang², Daniel Gabriel Mazzone³, Christof Niedermayer³, Johan Chang², Jun Zhao^{*1,4}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China ²Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland ³Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen, Switzerland ⁴Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China

Abstract An elucidation of the structure of crystal electric field levels in rare-earth magnets is important for understanding its magnetism. Here we report thermal dynamic and neutron scattering measurements of newly discovered triangular lattice magnet NaTmTe₂ under zero and external magnetic fields. Our experiments revealed that the crystal field ground state of Tm³⁺ in NaTmTe₂ is a singlet, and that the energy gap between ground state and the 1st/2nd excited state is ~3 meV/4.5 meV. Moreover, the crystal field excitations are surprisingly highly dispersive and field dependent, indicating strong coupling between crystal electric field and magnetic exchange interactions in NaTmTe₂.

a-d The 1st and 2nd crystal field state excitations under 0 T, 2 T, 6 T, 10 T, respectively. The external magnetic fields are parallel to the *c* direction of sample. **e** Sketch of the reciprocal space. Black Constant energy cuts along the high-symmetry Γ -K- Γ -M- Γ direction at the indicated energy at 60 mK under zero field.

Reference

Yao Shen, et al. Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO₄, Nature Communications 10,

dashed lines show the Brillouin zone boundaries.

