Multi-Channel Hologram based on High-efficient Metasurfaces

Tong Liu¹, <u>Changhong Dai</u>¹, Dongyi Wang^{1,*}, Lei Zhou^{1,*}

¹State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), and Physics Department, Fudan University, Shanghai 200438, China

²Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China Email address: Dongyi Wang, E-mail <u>dywang17@fudan.edu.cn</u> ; Lei Zhou, E-mail: <u>phzhou@fudan.edu.cn</u>

I. Backgrounds & Motivations

Fig. 1 (a) generating arbitrary VOFs and (b) scaler hologram based on metasurface

• Motivations

1. Propose a general approach to design vectorial meta-hologram with both arbitrary farfield pattern & polarization distribution

2. Use this platform to realize all kinds of holograms: single-channel hologram, delinked bi-channel hologram and multi-channel vectorial hologram

II. Basic idea

 $\begin{pmatrix} L_u \\ L_v \\ \zeta \end{pmatrix} \Leftrightarrow \begin{pmatrix} \Phi \text{res} \\ \Delta \Phi \\ \zeta \end{pmatrix}$

V. Delinked Bi-Channel Hologram

Fig. 5 Delinked Bi-Channel Holograms Based on Metasurfaces

• Key process

For two pre-designed patterns A^{σ} , The total phase Φ_{Tot}^{σ} is obtained after N-times cycle

- Meta-surface design
- 1. $e^{i\Phi_{Tot}^{\sigma}} = e^{i(\Phi_{Res} + \sigma \Phi_{Geo})}$

Fig. 2 Schematic of generating multi-channel vectorial hologram with simultaneous manipulation of farfield wave-front and LPDs based on metasurface

• Key Points

farfield-to-nearfield logics by employing a Gale-Shapley algorithm, which could calculate:

- **1.** the appropriate phase distribution of interface phase $\Phi_{Tot}(\vec{r})$
- 2. local polarization distribution $|\tilde{\sigma}(\vec{r})\rangle$ on the meta-surface

III. Design strategy & Benchmark case

Fig. 3 (a) Meta-atom design: MIM tri-layer meta-atom for reflection geometry (b) Meta-atoms functioning as half-wave plates

2. $\Delta \Phi = \pm \pi$: **LCP** \rightarrow **RCP**, **RCP** \rightarrow **LCP**

VI. Multi-channel Vectorial Hologram

Fig. 6 Multi-Channel Vectorial Holograms with cylindrical polarization

F * D	aMa F ★ D ¶GP	⊖M. F.★D GO	aMs F ★ D *GP	M F 水 D 、G P
F * D	aMsi F∦D ¶G₽	∎M F *k D G ■	aMs F ★ D ¶ G P	₩ F ★ D G
F*B G	M I F - → D G	aMs F ★ D °G P		aMe F ★ D ¶G
F * D		aMs F ₩ D G C	M [→] F ↓ D G	aMs F ★ D ¶GP

Fig. 7 Multi-Channel Vectorial Holograms with varied local elliptical polarization

• Key process

For a pre-designed pattern A with complex local polarization distributions (LPDs) the total phase Φ and $|\tilde{\sigma}\rangle$ are obtained after N times

- Design Strategy
 - A set of atom ,each of which could:
- **1.** Convert the incident polarization $|\sigma_0\rangle$ into arbitrary $|\tilde{\sigma}\rangle$
- **2.** Provide an extra phase $\Phi_{Tot} = \Phi_{Res} + \sigma \Phi_{Geo}$ (spin dependent Geometric phase)

• Benchmark case

1. Designed meta-atoms functioning as half-wave plates 2. Possess an extra resonance phase Φ_{Res}

IV. Single-Channel Hologram Based on Metasurfaces

Fig. 4 Single-Channel Hologram Based on Metasurfaces

• Key process

For a given pattern A, the total phase Φ_{Tot} is obtained after N-times cycle

• Meta-surface design

- distributions(LPDs), the total phase Φ_{Tot} and $|\tilde{\sigma}\rangle$ are obtained after N-times cycle
- Meta-surface design

LCP \rightarrow **Radial, RCP** \rightarrow **Tangential LCP**(**RCP**) \rightarrow **LPDs with varied ellipticity**

VII. Conclusions & Perspectives

- 1. A generic platform is proposed for the high-efficient realization of arbitrary holograms.
- 2. Both single-channel hologram and delinked bi-channel holographic meta-devices are designed and characterized to demonstrate this platform.

3. Multi-channel vectorial holograms with meta-surfaces are also designed and characterized, each possessing different multi-channel LPDs.

4. More holographic physics to be revealed and new generation of photonic holographic devices to be explored...

References

2. $\Delta \Phi = \pm \pi$: LCP \rightarrow RCP, RCP \rightarrow LCP

[4] Yao-Wei Huang, et.al.Nano Lett.2015,15,3122-3127

