

Programmable all-thermal encoding

Min Lei¹, Jun Wang², Chao-ran Jiang³, Fu-bao Yang¹, Ji-ping Huang¹ ¹Department of Physics, Fudan University, Shanghai 200438, China ²School of Physic, East China University of Science and Technology, Shanghai 200237, China ³Department of Physics, Chinese University of Hong Kong, Hong Kong 999077, China

Abstract. Information processing and storage depend on advanced encoding technologies, which have been studied and implemented adequately in wave fields ranging from electromagnetism to acoustics^[1,2]. However, heat is seldom utilized in signal transfer as a significant carrier of information because of the lack of programmability with flexible unit structures. Here, we design and realize a programmable all-thermal encoding strategy, where conductive heat is used for signal read-in, encoding, and output. Thanks to the switchable cloak-concentrator metadevices, the binary signals are distinguishable by the divergent feature of heat flow and detected within local sites regardless of the intrinsic diffusion nature. A proof-of-concept prototype is fabricated with the help of shape memory alloys due to their phase-change behavior under specific temperatures, yielding a robust thermal encoding platform.

Theoretical design.

We use the difference in heat flow between the central region of the cloak and the concentrator to distinguish binary signals; bypassing is 0 state, and concentrating is 1 state. The encoding unit cell based on a switchable cloak-concentrator will produce

Numerical simulations. The results of encoding array based on temperature-dependent transformation thermotics in steady state.

different output digital states under varying ambient temperatures.

Temperature-dependent transformation thermotics[3] can achieve switchable

cloak-concentrator. The trans capacity can be expressed as $\kappa'(T') = \frac{A(T)\kappa_0 A^{tr}(T)}{\det A(T)}$, density, and thermal

$$\rho' = \frac{\rho}{\det \mathsf{A}(T)},$$

(a) Principle of programmable all-thermal encoding. (b) The encoding unit produce different output digital states under varying ambient temperatures.

(a) Individual control; (c) Batch control. (b) shows the temperature gradients of units' center and background in (a), and (d) corresponds to (c).

Experimental results.

Experiment design. Thermal encoding based on temperature-dependent

scattering cancellation theory.

(a) Top view of a temperature-controlled thermal encoding device. (b1) and (c1) are front views of the device at different temperatures. (b2) and (c2): experimental results. (b3) and (c3): temperature gradient-position curve.

Reference.

1. H. Borko, American documentation 1968, 19, 3-5.

2. B. C. Brookes, Journal of information science 1980, 2,

Conclusion.

• We design and realize a programmable all-thermal encoding strategy, for the first time in macroscopic diffusion systems.

