

微纳光子结构教育部重点实验室(复旦大学) Key Laboratory of Micro- and Nano-Photonic Structures (Fudan University), Ministry of Education

Realizing tunable evolution of bound states in the continuum and circularly polarized points by symmetry breaking

Xinhao Wang¹, Jiajun Wang^{1*}, Xingqi Zhao¹, Lei Shi^{1,2,3,*} and Jian Zi^{1,2,3,*}

State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China

Institute for Nanoelectronic devices and Quantum computing, Fudan University, Shanghai 200433, China

Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

Bound states in the continuum (BICs) and circularly polarized points Abstract (C points), being well-known momentum-space polarization singularities in photonic crystal (PhC) slabs, have attracted much attention for their novel properties. Recently, it was theoretically proposed that starting from a high-order BIC, various evolutions of BICs and C points could be realized by symmetry breaking. To date, there is still no experimental realization of tunable evolutions of polarization singularities from a high-order BIC. Here, we experimentally realized tunable evolution of BICs and C points in momentum space by symmetry breaking on purpose. Starting from a highorder BIC, we observed the generation of polarizarion singularities under corresponding in-plane symmetry. The symmetry breaking factors were further applied to continuously modulate the movement of polarization singularities in momentum space. Our results can provide effective approaches of symmetry breaking to on purpose designing BICs and C points in momentum space.

High-orde	er BIC in the C_6 -sy	mmetry PhC slab
d	880	880

Schematic view of the free-standing 2D PhC slab with C₆ symmetry and the high-order BIC at the Γ point.

charge and C points of -1/2 charge under C_3 symmetry and the rotational evolution of C points.

Summary

For the PhC slab of triangular lattice with C₆ symmetry, a high-order at-Γ BIC with -2 charge was experimentally observed and characterized. By breaking the C_6 symmetry to the C_2 symmetry, off- Γ BICs were generated and could be continuously modulated in momentum-space by the symmetry-breaking factor.

By breaking the C₆ symmetry to the C₃ symmetry, C points would spawn from the high-order at- Γ BIC, and another BIC with +1 charge emerged and fixed at Γ point. The generated C points were rotated in momentum space by applying the rotation operation on the unit-cell configurations.

