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Success of KPM

Inspiration
The intrinsic relation between Chebyshev polynomials and cosine and sine  
functions,
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 Classical Kernel Polynomial Method (KPM):

 KPM achieves much success in classical simulation;

 However, to gain these moments  �� �=0
�−1 , the time complexity i

s O(�D) , where � is the dimension of Hilbert space
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 Calculation of the spectral density of Hermitian matrices;

 Static correlations at finite temperature;

 Dynamical correlations at finite temperature;

 Can be used as one component of other methods, like Monte  
Carlo simulations, Cluster Perturbation theory …..

A new expansion method based on the Fourier Series:
1. For the density of states (Dos) only,

2. For local observables �

Models used

Moments As Results of quantum circuit outputs

The Thermal Ensemble Iteration subroutine

Summary
 Compared with KPM, our algorithms can achieve exponential advantages in  

terms of time and space cost;
 The THEI is efficient, once the target Hamiltonian’s ground-state can be  

prepared by quantum circuits at polynomial cost;
 In terms of quantum digital and analog realizations, our plan is appealing to  

the NISQ era.
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Problems at low temperature regimes
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Ø Instead of �(�), now the target function is 
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Experimental Realization Protocols

   Digital (Trotterization)

                              1D-XXZ model

Analog(atom-based simulation )


