
Introduction 

In this context, using the hybrid 
quantum-classical algorithm, 
combining classical optimizers 
and quantum computers, is a 
competitive strategy for solving 
specific problems. We put 
forward its use for optimal 
quantum control. We simulate 
the wave-packet expansion of a 
trapped quantum particle on a 
quantum device with a finite 
number of qubits. We then use 
circuit learning based on 
gradient descent to work out 
t h e i n t r i n s i c c o n n e c t i o n 
between the control phase 
transition and the quantum 
speed limit imposed by unitary 
dynamics. We further discuss 
the robustness of our method 
against errors and demonstrate 
the absence of barren plateaus 
in the circuit. The combination 
of digital quantum simulation 
and hybrid circuit learning 
opens up new prospects for 
quantum optimal control. 
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Motivation arXiv: 2211.00405 (2022)

|Φ̃(t + d t )⟩ = 𝒱(t )dt/2QFT𝒯(t )dtQFT†𝒱(t )dt/2 |Φ̃(t )⟩,

|Φ⟩ =
2n−1

∑
i=0

Ψ(xi) | i ⟩ = Ψ(x0) |0⋯0⟩ + … + Ψ(x2n−1) |1⋯1⟩
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Results 

H (t ) =
̂p2

2m
+

1
2

m ω2(t )[ ̂x − x0(t )]2

Using a digital quantum computer to solve optimal control problem.

Discussion 

• The absence of Barren Plateau
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• Noise resilience (bit-flip errors)

|∂θk J | =
Nr

∑
i=1

1
2Nr

Ji(θk +
π
2

) − Ji(θk −
π
2

)

ξBF(ρ) = (1 − β )ρ + β X ρX

Methods 

• The circuit realization for the  time-operator  of quadratic Hamiltonian [2,3]:

 (a). The control phase diagram, 
where the fidelity-optimal control 
sequence  as  functions 
of  for different . (b).The 
logarithm of infidelity  as 
a function of in (b) and (c). 
Five selected control sequence for 
different total time are compared 
with the bang-bang optimal control 
(thick gray line). The solid line, as a 
reference, stands for the case of 

 in (a) and (b) . 

f (t ) = ω2(t )
t /tf tf ∈ [2,5]

log10(1 − F )
{tf , Nt}

tf

topt
f = 3.152

𝒜j = exp {−i d t [h ( jd x + x0)2 + σ ]},

• Encoding the wave-packet into qubit states :

• Reproducing the dynamic as:

We consider a quantum particle trapped in a time-varying 
parabolic potential:

The time-optimal control of wave-packet expansion is a 
‘bang-bang’ control, see ref [1].

The dynamic is engineered by trap frequency :   .ω0 → ωf

• The circuit complexity 

The total gate count of the ansatz is: , with exponentially 

enlarged Hilbert space requires  control-phase gates.

∼ 5Ntn2 /2
∼ n2 /2

https://arxiv.org/search/?searchtype=author&query=Huang%2C+T
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