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Introduction

4 )
As one of the origins of novel phenomena encompassing quantum magnetism, a

kagome lattice has played a key role for realizing and tuning novel electronic
states, owing to its unique lattice geometry and band structure.

RVeSne (R = rare-earth element) is a newly discovered kagome family, which is
isostructural to TbMneSne structural prototype but the kagome layer composed of
V atoms is nonmagnetic. For magnetic R-triangular lattice (R = Gd-Tm), the
segregated magnetic layer not only permits a direct tunability for nonmagnetic
kagome layer below the magnetic transition temperature T _, but also obviates the
complex magnetic configurations in RMneSne family because of a pristine
Mn-kagome lattice. y
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(a) Longitudinal resistivity o as a function of temperature T at ambient pressure. Insets:
crystal structure of (Gd, Tb)VeSne and closeup of p_at T =2 K. (b), (c) p_(T) curves under
various pressures. Insets: resistivity under different pressure at T = 2 K. (d) Pressure
dependence of magnetic transition temperature T .
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Pressure tuned magnetotransports of (Gd, Tb)VSn,
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(a), (d) Field dependence of transverse magnetoresistivity (MR) of GdVeSns and TbVeSne
under different pressure at T = 2 K. (b), (e) Hall resistivity Py under varying pressures at T
=2 K. (c), (f) Anomalous Hall resistivity PQ, as a function of pressure, which is derived from
(b) and (e), respectively.
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High-pressure electric transport measurements were
performed in a diamond anvil cell (DAC) made of BeCu

Ruby- - alloy with NaCl powder as the pressure transmitting
Sample------ medium. A mixture of c-BN powder and epoxy is adopted
NaCl----------- . . .
as the insulating layer. The pressures are determined by
the ruby luminescence method.
Gasket--------4
cBN -------
Diamond - 4 The four-probe method and Van Der Pauw method are

applied for the transverse magnetoresistance and Hall

;————;
e @ resistance measurements, respectively.
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(a)-(d) p,, Vversus uoH at virous temperatures. Both of samples exhibit a positive
anomalous Hall effect (AHE) under high pressure, while low-pressure AHE responds
oppositely. The negative AHE is robust although the low-pressure Py of GdVeSne

HoH (T)

represents another behavior against bulk or other batches in the range of y H =12 T.
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Phase diagram and TYJ model fittings for (Gd, Tb)V Sng
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(a) Phase diagram of GdVeSne and TbVeSne with pressure. Beige shaded area highlights
the anomaly of anomalous Hall conductivity ofy at T = 2 K crossing the critical pressures.
(b) Fittings of o7 dependence of oy using TYJ model (PRL 103, 087206 (2009)) for
GdVeSns and TbVeSne. All of well linear relationships reflect the pressure-induced AHE can

mainly result from the intrinsic effect of the Berry curvature.
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Conclusions

4 )
*In GdVeSne and TbVeSns, we observe two pressure-induced
anomalous Hall effect (AHE) features: an unusual suppression (below
critical pressure) and a progressive enhancement (above critical
pressure).

« Based on the TYJ model, both AHE features are mainly attributed to
the intrinsic contribution of the Berry curvature. The AHE-weakened
and AHE-enhanced regimes indicate that two distinct modulations of
topological bands before and after the critical pressure.
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