

PLD growth & reduction results on infinite layer nickelates superconducting films

Chihao Li¹, Xiaoxiao Wang¹, Haichao Xu¹, *, Rui Peng¹ * and Donglai Feng^{1,2}*

¹ Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China ² Hefei National Lab. for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, China.

Background: new unconventional superconductor family with exotic behaviors

Multi-band behavior

Motivation

Possible new clues to unveil the pairing mechanism

of unconventional superconductors.

Still lack electronic structure studying!

0.5

In-situ reduction is needed for ARPES measurement!

Experiments

6.0 -

сШ

Conclusions & outlook

High quality nickelate precursors NdNiO₃ and Nd_{0.8}Sr_{0.2}NiO₃ are grown by PLD.

☆ After ex-situ reduction, Nd_{0.8}Sr_{0.2}NiO₂ show superconductivity.

After in-situ reduction, Nd_{0.8}Sr_{0.2}NiO₂ show superconducting signal.

In-situ reduction method needs further development to fulfill the demand in electronic structure measurement.