Direct imaging of current driven antiferromagnetic domain switching in CoO/Pt bilayer

Tong Wu¹, Haoran Chen¹, Jia Xu¹, Yizheng Wu¹

¹ Physics department, Fudan University, Shanghai, China

Background

Antiferromagnetic **Spintronics**

Pt/Si (a) $\times 30$ = 32 mA---Write Pt/MgO (<mark>UU)</mark> 3 $\times 10$ ₹-300 ----Write

Direct imaging of AFM domain switching in NiO

10.02	W X X X X
5.5x10 ⁺⁺ A m ⁻²	

Current driven antiferromagnetic domain switching process

> Typical switching process $d_{c_0O}=8$ nm at 80 K

Evidence of current driven switching of CoO domains with $\vec{n} \parallel \vec{j}$

Temperature and thickness dependence switching analysis

Independent of d_{CoO}. Magnetoelastic dominant switching process. >

Further analysis on switching process

Excluding spin-orbit torgue contribution

> Switching with fixed current density and temperature

- Higher current density could help domain wall motion across pinning sites.
- > Switching polarity reversal at high current density
- \checkmark [1-10] switching

✓ [110] switching

> Typical switching process d_{coo} =8 nm at 80 K

Switching polarity reversal at high current density

Summary

Magnetoelastic dominant current driven switching of AFM domains were demonstrated by direct imaging.

Switching polarity reversal was observed in CoO with higher

