Tunable electronic structure of few-layer graphene with pressure

Lei Mu¹, Shenyang Huang ¹, Qiaoxia Xing ¹, Chong Wang¹, Yanlin Mou¹, Yuchen Lei¹, Yuangang Xie¹, Jiasheng Zhang¹, Junwei Wa¹, Yixuan Ma¹, Hugen Yan^{1,*}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.

Introduction

The superior physical properties of graphene make it a promising material. Recently, there is an alternative approach of tuning the interlayer interaction of few layer graphene with pressure to modulate the electronic structure. However, the pressure-induced infrared responses of few layer graphene have not been reported experimentally to date. Here, we investigate the pressure effect on the band structure of 2L-8L graphene with ABA-stacked in a diamond anvil cell(DAC)

Layer-dependent pressure effect on graphene

through Fourier transform infrared spectroscopy. The pressure effect on the electronic structure of few-layer graphene can be explained by the tight-binding model in conjunction with a Morse potential. Our study paves a way for van der Waals engineering of few-layer graphene.

Optical characterization of bilayer graphene in DAC

0.00 2.0 0.0 0.5 2.5 3.0 3.5 .5 .0 Pressure (GPa) Layer-dependent optical transition energy of graphene: $E(P) = 2\gamma(P) \cdot \cos(\frac{n\pi}{N+1})$ According to the Morse potential, the interlayer coupling strength $\gamma(P)$ can be given by $\gamma(P) = \frac{\gamma_0}{2} \left(1 + \sqrt{1 + P/P_{coh}} \right)$ where γ_0 is interlayer coupling strength under OGPa, P_{coh} is obtained as 1.74GPa through fitting datas. The relative changes of layer-dependent optical transition energy of graphene versus pressure as follows:

Conclusion

We investigated the evolution of pressure-induced electronic structures of 2L-8L graphene experimentally in detail. In order to quantify evolution of optical transition energy with pressure, the tight-binding model and the Morse potential are applied. Our study revealed that with increasing pressure, the interlayer coupling of graphene is enhanced, the correspond optical transition energy can increase ~22% up to 3GPa for 8LG.

