
Introduction 

Sensitivity improvement plays a critical role in high-precision detection while facing the challenge of noise interference and hardware 
limitations. Despite advances in signal analysis and noise reduction, underlying techniques often either heavily integrate our understanding 
of signal behavior or require stringent conditions such as strong correlation and entanglements, limiting practical implementation. In this 
article, we propose a novel approach that harnesses the power of machine learning to significantly enhance the sensitivity of weak-signal 
detection only relying on a finite amount of signal-free measurement outcomes. Our approach leverages the anomaly detection 
configuration with generative adversarial networks to score the observable anomaly, providing a high-sensitivity quantity to identify the 
signal response without the need for extensive knowledge of signal behavior or strict assumptions. We validate our method with an atomic 
force-sensing experiment and show the sensitivity improvement over an order of magnitude.Our work employs machine learning-based 
signal processing while independent of the signal and noise properties, which can foster a variety of sensing applications.
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 Fig.2. (a). The probability distribution of 
the COM on the y-axis  and anomaly score 
in the absence of force (blue) and in the 
presence of force (red), respectively. (b) 
The dimensionless anomaly score as a 
function of impulse  for an 
identical optical force , where the mean 
value  and  the score  of 
signal-involved experiments for sensing 
time .  The fitting line admits the slope 

. (c) We compare the sensitivity 
distribution of using the anomaly score 
(blue), COM with raw data (green) and 
w i t h r e d u c e d a t a s e t s ( y e l l o w ) , 
respectively. 
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 Fig.3.(a) The reconstructed atomic image produced by generator in different 
training epochs. (b). Six selected raw atomic images and corresponding anomaly 
localization are illustrated in (c).xres = | x − G*(E*(x )) |

 Fig.1. The machine-learning assisted atomic force sensing. (a). The workflow of 
anomaly detection method. (b). The schematic diagram of experiment setup for an optical 
force sensor (Sci.Bulletin 67 2291-2297). 

First, we characterize the sensitivity as 

                                               ,  

where one-sigma deviation of the signal-free distribution , the signal response 
 and  is the time cost for one experiment. We utilize the anomaly detection 

method to formalize the signal generation channel  

                                           ,  

where   refers to a fixed generative neural network trained by a set of signal-free 
observable .  Hereby, an anomaly is interpreted as data from a signal-involved 
distribution  instead of the signal-free distribution  (the training 
dataset), where  This generative model is trained by an adversarial training by 
optimizing   a standard min-max loss function 

                  

Where G: generator, D: discriminator.

Sensitivity:𝒮 = T0 ×
σ0
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Signal (anomaly score) : A = fAD(x )

fAD( ⋅ )
{xi}N

i=1
x̃ ∼ 𝒫δ(x̃ ) x ∼ 𝒫0(x )

{x , x̃} ∈ 𝒳 .
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V (D , G ) = 𝔼x∼𝒫x[log D (x )] + 𝔼z∼𝒫z[log(1 − D (G (z )))],
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In a broader vision, our approach involves harnessing the power of machine 
learning to effectively explore and extract valuable information that may be 
obscured by noise, overlooked by traditional methodologies. By formulating a 
robust statistical quantity (anomaly score), we circumvent the reliance on a priori 
assumptions about the inherent properties of the signal and noise, thus 
facilitating a more rigorous and unbiased analysis of signal. This methodological 
framework enables a deeper understanding and interpretation of the underlying 
phenomena, contributing to advancements in the field and paving the way for 
novel insights and discoveries among high-precision sensing applications.
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Improvement: ,  .𝒮COM /𝒮AS ≈ 40 𝒮COM
r /𝒮AS ≈ 10
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