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@stract: A population coding strategy based on superparamagnetic tunnel junctions (SMTJs) Is a natural platform to implement the brain-
Inspired unconventional probabilistic computing. Continuous attractor neural networks (CANNSs) consisting of SMTJs are applied for
anticipative tracking of target motion and multisensory information integration with a decentralized structure. Using the head direction motion,
we show the anticipative tracking of a SMTJs-based CANN, and its dynamics can be theoretically described by a group of travelling line. The
results reveal the connection improves the performance and can be greatly reduced by SMTJs. The strategy with multiple independent CANNS
also presents high price performance in anticipative tracking of high-dimensional motions. Besides, using the head direction inference combining
different sensory information, we demonstrate our proposed model has a wide range of network parameters and its performance Is better than the
standard Bayesian inference. The model Is very robust against the different sources of noise, the different breakdowns of module and the

@ersity of magnetic components.
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