Dynamic manipulation of conductive, convective, and radiative heat
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It is known that heat transfer involves three basic modes including conduction, convection, and

radiation, each with distinct mechanisms. Considering their diverse combination, we get various Re§earch .ObjeCt: Porous s.tructures, liquid-
solid hybrid thermal material [5]
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inspiration for on-demand heat management. We introduce extreme convection and intelligence g€

to enhance thermal conductivity and responsiveness than common conduction [1-4]. Through the Purpose: Simultaneously and independently

inclusion of laminar convection [5], we report a liquid-solid hybrid thermal material to achieve manipulate both conductive and convective

heat flows.
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Research object: Cylindrical cavities, Vision Tactile sensation

. (©ptics) e et A deep learning-assisted intelligent system is introduced into conventional material design,
made of the same material [6]

Diffieult distinetion | Neither hot nor cold resulting in a self-adaptive thermal metamaterial. (Conduction)

between true and false

Purpose: In-situ simulation of thermal Cvommd sy | Nelter hotorcod ¢ We develop a liquid-solid hybrid thermal metamaterial that supports both thermal convection

reality, see conceptual diagram in Fig. 9. i Al fase b ot o oA, ) , :
s P & g fik b and thermal conduction in the same material with a tunable fashion. (Convection)

Approach: Calculation of the cavity B Virtual reality C  Mixed reality D Augmented reality

We develop an advanced technological platform that allows in-situ thermal rendering of
effective emissivity €,

virtual objects within simulated reality environments. (Radiation)
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