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Fig. 1.The magnetic field dependence of 𝜌𝑥𝑥
and 𝜌𝑦𝑥 at 0.3 K with prominent SdH oscillations

Fig. 2. The angle dependence of SdH 

oscillation frequencies gives density 𝑛𝐹𝑆 =
3.8 × 1018 cm-3, which is three orders of 

magnitude larger than 𝑛𝐻.

Fig. 3. The comparison between effective 

mass extracted from the quantum 

oscillations and interband-Landau-level 

transition indicates a strong 

renormalization effect near the Fermi 

surface. The transport effective mass 

increases systematically from 0.74𝑚𝑒 at 
8.73 T to 2.19 𝑚𝑒 at 31.25 T.

Fig. 6. The scaling plot of 𝝈/𝒌𝑭 against the metallicity parameter 𝒌𝑭𝒍 among these 

materials at the temperatures where quantum oscillations persist.

Fig. 5. Hall and Seebeck coefficient show 

sign reversal from n-type to p-type below 

210 K, which conflicts with the result of 

ARPES and SdH oscillations. 

Fig. 4. Band dispersion at 10 K measured by 

ARPES with the photon energy of 98 eV.
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Carrier sign reversal due to van Hove singularity

Quantum oscillations and field-enhanced mass

Quantum oscillations in Kondo insulator SmB6 

seems originate from neutral bulk Fermi surface 

Quantum oscillations in CaAs3 come from a small 

Fermi surface and are absent in torque

Fig. 7. Insulator-like R-T of CaAs3 Fig. 8. Torque measurement of CaAs3 at 1.4 K

Most electrons are localized by 

mobility gap while remnant mobile 

electrons beyond the mobility edge are 

coherent and contribute to quantum 

oscillations. Those localized electrons 

(incoherent) contribute to torque but not 

to conductivity, which may overwhelm 

dHvA oscillations of mobile electrons.

1. Electrons in CaAs3 show the smallest metallicity parameter among all the materials with 3D quantum oscillations.

2. The transport effective mass increases systematically with magnetic fields, suggesting a strong many-body renormalization effect near 

the Fermi surface. 

3. Distinct from strange metals, mobile electrons near the MIR limit manifest the metallic characteristic of quasiparticle coherence.

𝑛𝐻 = 4.8 × 1015 cm-3

Scaling plot with smallest 𝑘𝐹𝑙 = 1.2 of CaAs3

Drude model: 𝜎/𝑘𝐹 =
𝑒2

3𝜋2ℏ
𝑘𝐹𝑙𝜎 = 𝑛𝜇𝑒 =

𝑒2

3𝜋2ℏ
𝑘𝐹
2𝑙 (linear)

MIR limit sets a boundary for metal where 𝑙 should exceed the Fermi 

wavelength. Below this limit, a metal-to-insulator transition occurs due to 

electron localization.

𝑘F : Fermi wave vector 𝑙 : Mean free path

Quantum oscillations usually appear in metal with highly coherent transport. 

However, quantum oscillations were observed in electrically insulating SmB6, which 

reveal a large three-dimensional Fermi surface. Interestingly, quantum oscillations 

only appear in torque measurement but not in conductivity, which indicates a 

charge-neutral bulk Fermi surface.
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