2024 Fudan University Department of Physics Academic Annual Conference

Click metamaterials

Fast acquisition of thermal conductivity and functionality diversities <u>Chengmeng Wang¹</u>, <u>Peng Jin¹</u>, Fubao Yang², Pengfei Zhuang¹, Liujun Xu² and Jiping Huang^{1,*}

¹ Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China ² Graduate School of China Academy of Engineering Physics, Beijing 100193, China

*Correspondence: jphuang@fudan.edu.cn

Convertible Isotropic Metashell With Functional Stability

RESULTS

nterdisciplin

Since

2005

Q: Can we create various thermal metamaterials with different material characteristics through modular assembly, similar to building with LEGO bricks?

PRIOR WORK & OUR DESIGN

313K				289
Convertible	e Anisotropic I	Metashell W	ith Function	ality Diversities

CONCLUSION

A1: We can realize convertible thermal isotropy by adjusting the porosity of the unit cell (THFC).

Molecular diversity

A2: We also realize convertible thermal anisotropy by arranging arrays of unit cells with different thermal conductivities (The expanded THFC).

200

240

160

 κ_{rr} (W m⁻¹K⁻¹)

120

Thermal conductivity diversity

III

(a)

(d)

