Antisymmetric planar Hall effect in rutile oxide films induced by the Lorentz force

Yongwei Cui^{1†}, Zhaoqing Li^{2,3†}, Haoran Chen¹, Yue Chen^{2,3}, Yunzhuo Wu¹, Tong Wu¹, Yi Liu², Zhe Yuan^{3*}, and Yizheng Wu^{1*}

¹Department of Physics, Fudan University, Shanghai, China, ²Department of Physics, Beijing Normal University, Beijing, China, ³Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai

Introduction

Observation of APHE in $RuO_2(101)$

WU GROUP

> Ordinary Hall effect

 $V_H \propto B_z$, antisymmetric.

Whether there is antisymmetric planar Hall effect? (In-plane Hall effect)

Existing experimental observations:

Liang, T. et al. Nat. Phys. 14, 451-455 (2018), Ge, J. et al. Natl. Sci. Rev. 7, 1879-1885 (2020), Zhou, J. et al. Nature 609, 46-51 (2022).

All above observations were attributed to the **Berry curvature**, whether the *Lorenz force* plays a role in the IPHE?

Sample preparation

Lorentz force mechanism of the APHE

RHEED

STEM

AFM

	TiO ₂	RuO ₂	IrO ₂
=b (Å)	4.59	4.492	4.545
$\alpha(\dot{\Lambda})$	2.06	3 106	3 10

Magnetron sputtering with O_2

First principle calculation

 S_z and S_x broken

 S_{γ} ($\gamma = x, y, z$) represents an

arbitrary symmetry in the set of

 $\{M_{\gamma}, C_{2\gamma}, TM_{\gamma}, TC_{2\gamma}\}$

 k_z

891<u>.4</u> pm

-866.1 pm

1.0 um

(101) plane

(001) plane

 v_z cancelled owing to the out-of-plane or in-plane symmetry

Summary and Outlook

Net component of

out-of-plane group

velocity v_z

In-plane Hall effect observed in Rutile oxide films

- > Independent on the direction and magnitude of current and temperature.
- > Independent on magnetic order or spin canting.
- > Lorentz force provides the dominant mechanism to induce the IPHE.

The physical picture of the IPHE can be readily generalized